OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1217–1223

Optical mechanism for aberration of starlight

Robert A. Woodruff  »View Author Affiliations

JOSA A, Vol. 29, Issue 7, pp. 1217-1223 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a physical-optics-based theory for aberration of starlight and show that the influence of the moving sensor on the incident stellar wavefront combined with a finite velocity of light within the sensor can fully account for the aberration phenomena. Our treatment differs from all previous derivations because we include wavefront-imaging physics within the sensor model. Our predictions match existing Earth-based aberration measurements but differ from predictions of the special relativistic-based theory for larger velocities. We derive design parameters for an experiment using an Earth-based sensor containing a refractive optical medium that would experimentally differentiate between these two theories and yield an independent experimental test of time dilation.

© 2012 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(000.2690) General : General physics
(260.0260) Physical optics : Physical optics
(350.1270) Other areas of optics : Astronomy and astrophysics
(350.5720) Other areas of optics : Relativity
(000.2658) General : Fundamental tests

ToC Category:
Physical Optics

Original Manuscript: January 18, 2012
Revised Manuscript: February 22, 2012
Manuscript Accepted: March 2, 2012
Published: June 6, 2012

Robert A. Woodruff, "Optical mechanism for aberration of starlight," J. Opt. Soc. Am. A 29, 1217-1223 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bradley, “Account of a new discovered motion of the fixed stars,” Phil. Trans. 35, 637–661 (1728). [CrossRef]
  2. D. E. Liebscher and P. Brosche, “Aberration and relativity,” Astronomische Nachrichten 319, 309–318 (1998). [CrossRef]
  3. A. Fresnel, “Lettre à son frère Léonor,” in Oeuvres Complètes, Vol. 2 (Imprimerie impériale, 1868), pp. 820–824.
  4. A. Fresnel, “Sur l’influence du mouvement de terre dans quelques phénomènes d’ optique,” in Oeuvres Complètes, Vol. 2 (Imprimerie impériale, 1868), p. 627.
  5. A. P. French, Special Relativity (W.W. Norton, 1968), pp. 132–134.
  6. J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Phil. Trans. R. Soc. Lond. 155, 459–512 (1865). [CrossRef]
  7. A. A. Michelson, “The relative motion of the Earth and the luminiferous ether,” Am. J. Sci. 22, 120–129 (1881).
  8. A. A. Michelson, and E. W. Morley, “On the relative motion of the Earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887). [CrossRef]
  9. A. Gjurchinovski, “Relativistic aberration of light as a corollary of the relativity of simultaneity,” Eur. J. Phys. 27, 703–708 (2006). [CrossRef]
  10. Bureau International des Poids et Mesures, The International System of Units (SI), 8th ed. (Organisation Intergouvernementale de la Convention du Mètre, 2006), pp. 112 and 126. Throughout this paper we apply the internationally accepted values, in units of kilometers/second, of c=299,729.458 and v=29.7846918, using 0.01720209895 radians per day as the value for the Gaussian constant. Thus, we use β=v/c=9.9351×10−5  radians  =20.4926226 arc sec. In air (n=1.000288), the speed of light is 299,706.059  km/sec, so an air-filled sensor would measure β=20.49853  arc  seconds.
  11. E. Eisner, “Aberration of light from binary stars—a paradox?” Am. J. Phys. 35, 817–819 (1967). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), pp. 8–9.
  13. A. P. French, Special Relativity (W.W. Norton, 1968), pp. 72–74.
  14. P. Hillion, “Relativistic theory of scalar and vector diffraction,” J. Opt. Soc. Am. A 9, 1794–1800 (1992). [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 57–58 and pp. 77–83.
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 63–65.
  17. J. D. Jackson, Classical Electrodynamics (Wiley, 1962), p. 349.
  18. J. D. Jackson, Classical Electrodynamics (Wiley, 1962), pp. 360–362.
  19. W. Rindler, Essential Relativity Special, General, and Cosmological (Springer-Verlag, 1986), pp. 57–58.
  20. L. Sartori, Understand Relativity: a Simplified Approach to Einstein’s Theories (University of California, 1996), p. 115.
  21. E. F. W. Klinkerfues, Die Aberration der Fixsterne nach der Wellentheorie (1867) (Kessinger, 2010) (in German).
  22. G. B. Airy, “On a supposed alteration in the amount of astronomical aberration of light, produced by the passage of the light trough a considerable thickness of refracting medium,” Proc. R. Soc. Lond. 20, 35–39 (1871). [CrossRef]
  23. M. Hoek, Sur la différence entre les valeurs de la constante de l'aberration d'après Delambre et Struve,” Astron. Nachr. 70, 193–198 (1868). [CrossRef]
  24. A. P. French, Special Relativity (W.W. Norton, 1968), p. 45.
  25. F. A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, 1957), pp. 19–20.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited