OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1237–1246

Modeling of cavities using the analytic modal method and an open geometry formalism

Jakob Rosenkrantz de Lasson, Thomas Christensen, Jesper Mørk, and Niels Gregersen  »View Author Affiliations


JOSA A, Vol. 29, Issue 7, pp. 1237-1246 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001237


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an eigenmode expansion technique for calculating the properties of a dipole emitter inside a micropillar. We consider a solution domain of infinite extent, implying no outer boundary conditions for the electric field, and expand the field on analytic eigenmodes. In contrast to finite-sized simulation domains, this avoids the issue of parasitic reflections from artificial boundaries. We compute the Purcell factor in a two-dimensional micropillar and explore two discretization techniques for the continuous radiation modes. Specifically, an equidistant and a nonequidistant discretization are employed, and while both converge, only the nonequidistant discretization exhibits uniform convergence. These results demonstrate that the method leads to more accurate results than existing simulation techniques and constitutes a promising basis for further work.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(290.0290) Scattering : Scattering
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 27, 2011
Revised Manuscript: March 12, 2012
Manuscript Accepted: March 12, 2012
Published: June 6, 2012

Citation
Jakob Rosenkrantz de Lasson, Thomas Christensen, Jesper Mørk, and Niels Gregersen, "Modeling of cavities using the analytic modal method and an open geometry formalism," J. Opt. Soc. Am. A 29, 1237-1246 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-7-1237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  2. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  3. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010). [CrossRef]
  4. A. Taflove and S. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  5. J. Reddy, An Introduction to the Finite Element Method (McGraw-Hill Science/Engineering/Math, 2005).
  6. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  7. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341(2001). [CrossRef]
  8. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. thesis (University of Gent, Department of Information Technology, 2001).
  9. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  10. N. Gregersen and J. Mørk, “An improved perfectly matched layer for the eigenmode expansion technique,” Opt. Quantum Electron. 40, 957–966 (2008). [CrossRef]
  11. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005). [CrossRef]
  12. N. Gregersen, S. Reitzenstein, C. Kistner, M. Strauss, C. Schneider, S. Höfling, L. Worschech, A. Forchel, T. R. Nielsen, J. Mørk, and J. M. Gérard, “Numerical and experimental study of the Q factor of high-Q micropillar cavities,” IEEE J. Quantum Electron. 46, 1470–1483 (2010). [CrossRef]
  13. N. Bonod, E. Popov, and M. Neviére, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–491 (2005). [CrossRef]
  14. I. Tigelis and A. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999). [CrossRef]
  15. I. Tigelis and A. Manenkov, “Analysis of mode scattering from an abruptly ended dielectric slab waveguide by an accelerated iteration technique,” J. Opt. Soc. Am. A 17, 2249–2259(2000). [CrossRef]
  16. P. Kristensen, P. Lodahl, and J. Mørk, “Light propagation in finite-sized photonic crystals: multiple scattering using an electric field integral equation,” J. Opt. Soc. Am. B 27, 228–237(2010). [CrossRef]
  17. J. M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots: Physics and Applications, P. Michler, ed. (Springer-Verlag, 2003), pp. 269–315.
  18. L. Novotny and B. Hecht, Principles of Nano-Optics, 1st ed. (Cambridge University, 2006), Chap. 8, pp. 250–303.
  19. A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Chapman and Hall, 1983), Chap. 31, pp. 601–622.
  20. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  22. N. K. Uzunoglu, C. N. Capsalis, and I. Tigelis, “Scattering from and abruptly terminated single-mode-fiber waveguide,” J. Opt. Soc. Am. A 4, 2150–2157 (1987). [CrossRef]
  23. P. Kristensen, “Light–matter interaction in nanostructured materials,” Ph.D. thesis (Technical University of Denmark, Department of Photonics Engineering, 2009).
  24. P. Lalanne, J. P. Hugonin, and J. M. Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726–4728 (2004). [CrossRef]
  25. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D 43, 033001 (2010). [CrossRef]
  26. M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Höfling, J. Mørk, L. Worschech, M. Kamp, and A. Forchel, “Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments,” Phys. Rev. Lett. 108, 057402 (2012). [CrossRef]
  27. L. W. Li, H. G. Wee, and M. S. Leong, “Dyadic Green’s functions inside/outside a dielectric elliptical cylinder: theory and application,” IEEE Trans. Antennas Propag. 51, 564–574 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited