OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1259–1268

Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks

Claire M. Rollinson, Scott A. Wade, Betty P. Kouskousis, Daniel J. Kitcher, Greg W. Baxter, and Stephen F. Collins  »View Author Affiliations


JOSA A, Vol. 29, Issue 7, pp. 1259-1268 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001259


View Full Text Article

Enhanced HTML    Acrobat PDF (1842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The growth of reflectance peaks from optical fiber Bragg gratings has been studied to determine the relative importance of grating features when writing with the phase-mask technique. Measurements of spectra for two different fiber types using two distinct phase masks allowed the contribution from grating features of half the phase-mask periodicity and of the phase-mask periodicity at the Bragg wavelength to be determined. The dominance of the latter periodicity was ascribed to either the small fiber core diameter that limited the extent of the Talbot diffraction pattern, or the enhanced ± 2 diffraction orders of a custom-made phase mask used.

© 2012 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 9, 2011
Manuscript Accepted: March 31, 2012
Published: June 6, 2012

Citation
Claire M. Rollinson, Scott A. Wade, Betty P. Kouskousis, Daniel J. Kitcher, Greg W. Baxter, and Stephen F. Collins, "Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks," J. Opt. Soc. Am. A 29, 1259-1268 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-7-1259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  3. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008). [CrossRef]
  4. P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994). [CrossRef]
  5. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995). [CrossRef]
  6. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996). [CrossRef]
  7. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39, 6128–6135 (2000). [CrossRef]
  8. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol. 17, 2361–2365 (1999). [CrossRef]
  9. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003). [CrossRef]
  10. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29, 1458–1460 (2004). [CrossRef]
  11. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006). [CrossRef]
  12. W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993). [CrossRef]
  13. P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994). [CrossRef]
  14. S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009). [CrossRef]
  15. S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).
  16. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett. 18, 1277–1279 (1993). [CrossRef]
  17. C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005). [CrossRef]
  18. C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.
  19. S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (Australian Institute of Physics, Australian Optical Society, and Engineers Australia, 2010), p. 659.
  20. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993). [CrossRef]
  21. H. Patrick and S. L. Gilbert, “Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993). [CrossRef]
  22. T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994). [CrossRef]
  23. B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6, 1595–1624 (1996). [CrossRef]
  24. T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838–1840 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited