OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1277–1287

Setup for single-particle orbit tracking: artifacts and corrections

Dominique Ernst, Stefan Hain, and Jürgen Köhler  »View Author Affiliations


JOSA A, Vol. 29, Issue 7, pp. 1277-1287 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001277


View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on an experimental setup for single-particle orbit tracking, which allows following fluorescent nanoparticles for more than 10 min with a temporal resolution of 4 ms and a dynamic position accuracy of better than 10 nm. On a model sample—20 nm sized fluorescent polymer beads in glycerol—we will illustrate how artifacts caused by unavoidable experimental shortcomings (might) obscure the experimental result and how misinterpretations can be prevented.

© 2012 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Microscopy

History
Original Manuscript: March 16, 2012
Manuscript Accepted: March 30, 2012
Published: June 7, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Dominique Ernst, Stefan Hain, and Jürgen Köhler, "Setup for single-particle orbit tracking: artifacts and corrections," J. Opt. Soc. Am. A 29, 1277-1287 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-7-1277


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988). [CrossRef]
  2. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000). [CrossRef]
  3. B. W. Hicks and K. J. Angelides, “Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision,” J. Membrane Biol. 144, 231–244 (1995). [CrossRef]
  4. M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997). [CrossRef]
  5. M. Goulian and S. M. Simon, “Tracking single proteins within cells,” Biophys. J. 79, 2188–2198 (2000). [CrossRef]
  6. J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007). [CrossRef]
  7. S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell plasma membrane—do’s and don’t’s,” Methods 46, 131–140 (2008). [CrossRef]
  8. B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010). [CrossRef]
  9. E. L. Elson, “Fluorescence correlation spectroscopy: past, present, future,” Biophys. J. 101, 2855–2870 (2011). [CrossRef]
  10. M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Z. Phys. Chem. 92, 129–168 (1917). [CrossRef]
  11. O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010). [CrossRef]
  12. M. Hellmann, D. W. Heermann, and M. Weiss, “Anomalous reaction kinetics and domain formation on crowded membranes,” Eruophys. Lett. 94, 18002 (2011). [CrossRef]
  13. C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011). [CrossRef]
  14. E. L. Elson, “Fluorescence correlation spectroscopy and photobleaching recovery,” Annu. Rev. Phys. Chem. 36, 379–406 (1985). [CrossRef]
  15. E. L. Elson and D. Madge, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974). [CrossRef]
  16. J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16, 7142–7152 (2008). [CrossRef]
  17. M. Speidel, A. Jonáš, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett. 28, 69–71 (2003). [CrossRef]
  18. M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009). [CrossRef]
  19. B. J. Schnapp, J. Gelles, and M. P. Sheetz, “Nanometer-scale measurements using video light microscopy,” Cell Motil. Cytoskel. 10, 47–53 (1988). [CrossRef]
  20. Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
  21. M. Dahan, T. Laurence, F. Pinaud, D. S. Chemla, A. P. Alivisatos, M. Sauer, and S. Weiss, “Time-gated biological imaging by use of colloidal quantum dots,” Opt. Lett. 26, 825–827 (2001). [CrossRef]
  22. M. B. Forstner, J. Käs, and D. Martin, “Single lipid diffusion in Langmuir monolayers,” Langmuir 17, 567–570 (2001). [CrossRef]
  23. L. Holtzer, T. Meckel, and Th. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007). [CrossRef]
  24. E. J. G. Peterman, H. Sosa, and W. E. Moerner, “Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors,” Annu. Rev. Phys. Chem. 55, 79–96 (2004). [CrossRef]
  25. G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001). [CrossRef]
  26. J. Enderlein, “Positional and temporal accuracy of single molecule tracking,” Sing. Mol. 1, 225–230 (2000).
  27. J. Enderlein, “Tracking of fluorescent molecules diffusing within membranes,” Appl. Phys. B 71, 773–777 (2000). [CrossRef]
  28. Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009). [CrossRef]
  29. K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7, 3535–3539 (2007). [CrossRef]
  30. A. J. Berglund and H. Mabuchi , “Feedback controller design for tracking a single fluorescent molecule,” Appl. Phys. B 78, 653–659 (2004). [CrossRef]
  31. V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys. J. 88, 2919–2928 (2005). [CrossRef]
  32. V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).
  33. A. J. Berglund and H. Mabuchi, “Tracking-FCS: fluorescence correlation spectroscopy of individual particles,” Opt. Express 13, 8069–8082 (2005). [CrossRef]
  34. K. Kis-Petikova and E. Gratton, “Distance measurement by circular scanning of the excitation beam in the two-photon microscope,” Microsc. Res. Tech. 63, 34–49 (2004). [CrossRef]
  35. Q. Wang and W. E. Moerner, “Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap,” Appl. Phys. B 99, 23–30 (2010). [CrossRef]
  36. Q. Wang and W. E. Moerner, “An adaptive anti-Brownian electrokinetic trap with real-time information on single-molecule diffusivity and mobility,” ACS Nano 5, 5792–5799 (2011). [CrossRef]
  37. H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991). [CrossRef]
  38. R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A 37, R161–R208 (2004). [CrossRef]
  39. J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127–293 (1990). [CrossRef]
  40. D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to single particle tracking,” Biophys. J. 83, 2109–2117 (2002). [CrossRef]
  41. A. J. Berglund and H. Mabuchi, “Performance bounds on single-particle tracking by fluorescence modulation,” Appl. Phys. B 83, 127–133 (2006). [CrossRef]
  42. M. L. Sheely, “Glycerol viscosity tables,” Ind. Eng. Chem. 24, 1060–1064 (1932). [CrossRef]
  43. G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997). [CrossRef]
  44. A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011). [CrossRef]
  45. K. Halbach, “Matrix representation of Gaussian optics,” Am. J. Phys. 32, 90–108 (1964). [CrossRef]
  46. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  47. K. C. Neumann and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited