OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1367–1376

Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors

Wonju Lee and Donghyun Kim  »View Author Affiliations

JOSA A, Vol. 29, Issue 7, pp. 1367-1376 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (672 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have analyzed the effectiveness of field-matter integral overlap between target index distribution and local near-fields to assess detection sensitivity of surface plasmon resonance (SPR) biosensors. The correlation of the overlap with sensitivity was clear. An overlap integral defined with lateral electric field intensity produced the highest correlation due to tangential continuity across a boundary. Among the three detection scenarios considered, the correlation for localized SPR sensing was slightly lower than that of thin film-based detection and improved with an increased fill factor in the structure. The results will be useful to maximize the optical signature created by target interactions and to produce highest sensitivity of SPR detection to variations when target or field distribution is not uniform.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: January 3, 2012
Revised Manuscript: March 5, 2012
Manuscript Accepted: April 12, 2012
Published: June 21, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Wonju Lee and Donghyun Kim, "Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors," J. Opt. Soc. Am. A 29, 1367-1376 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126, 79–92 (2005). [CrossRef]
  2. C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392(2007). [CrossRef]
  3. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998). [CrossRef]
  4. Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002). [CrossRef]
  5. J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005). [CrossRef]
  6. S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012). [CrossRef]
  7. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B 35, 187–191 (1996). [CrossRef]
  8. A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997). [CrossRef]
  9. C.-M. Wu and M.-C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509–3514 (2004). [CrossRef]
  10. H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005). [CrossRef]
  11. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011). [CrossRef]
  12. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005). [CrossRef]
  13. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401–407 (2006). [CrossRef]
  14. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007). [CrossRef]
  15. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009). [CrossRef]
  16. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007). [CrossRef]
  17. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010). [CrossRef]
  18. Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355(2011). [CrossRef]
  19. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027–1034 (2009). [CrossRef]
  20. X. D. Hoa, M. Tabrizian, and A. G. Kirk, “Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nano-gratings,” J. Sens. 2009, 713641(2009). [CrossRef]
  21. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043–3048 (2009). [CrossRef]
  22. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010). [CrossRef]
  23. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011). [CrossRef]
  24. I. Abdulhalim, “Biosensing configurations using guided wave resonant structures,” in NATO Science for Peace and Security Series B: Physics and Biophysics, Optical Waveguide Sensing and Imaging, W. J. Bock, I. Gannot, and S. Tanev, eds. (Springer-Verlag, 2007), pp. 211–228.
  25. A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5, 571–606 (2011). [CrossRef]
  26. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nature Methods 5, 591–596 (2008). [CrossRef]
  27. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011). [CrossRef]
  28. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000). [CrossRef]
  29. K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, “Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures,” Opt. Lett. 34, 3905–3907 (2009). [CrossRef]
  30. A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003). [CrossRef]
  31. S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543–2549 (2007). [CrossRef]
  32. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  33. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851(1998). [CrossRef]
  34. C. W. Haggans, L. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mounting,” J. Opt. Soc. Am. A 10, 2217–2225 (1993). [CrossRef]
  35. I. Abdulhalim, “Simplified optical scatterometry for periodic nano-arrays in the quasi-static limit,” Appl. Opt. 46, 2219–2229(2007). [CrossRef]
  36. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007). [CrossRef]
  37. S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207(2006). [CrossRef]
  38. T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999). [CrossRef]
  39. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).
  40. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003). [CrossRef]
  41. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticles grating and a metallic surface,” Opt. Lett. 30, 3404–3406 (2005). [CrossRef]
  42. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307–2314(2006). [CrossRef]
  43. E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).
  44. H.-S. Cho and P. R. Prucnal, “New formalism of the Kronig-Penney model with application to superlattices,” Phys. Rev. B 36, 3237–3242 (1987). [CrossRef]
  45. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006). [CrossRef]
  46. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (437 KB)     
» Media 2: AVI (455 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited