OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1389–1398

Optical forces on small particles from partially coherent light

Juan Miguel Auñón and Manuel Nieto-Vesperinas  »View Author Affiliations

JOSA A, Vol. 29, Issue 7, pp. 1389-1398 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We put forward a theory on the optical force exerted upon a dipolar particle by a stationary and ergodic partially coherent light field. We show through a rigorous analysis that the ensemble averaged electromagnetic force is given in terms of a partial gradient of the space-variable diagonal elements of the coherence tensor. Further, by following this result we characterize the conservative and nonconservative components of this force. In addition, we establish the propagation law for the optical force in terms of the coherence function of light at a diffraction plane. This permits us to evaluate the effect of the degree of coherence on the force components by using the archetypical configuration of Young’s two-aperture diffraction pattern, so often employed to characterize coherence of waves.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.2110) Physical optics : Electromagnetic optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 26, 2012
Revised Manuscript: April 11, 2012
Manuscript Accepted: April 11, 2012
Published: June 21, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Juan Miguel Auñón and Manuel Nieto-Vesperinas, "Optical forces on small particles from partially coherent light," J. Opt. Soc. Am. A 29, 1389-1398 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  3. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  4. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  5. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004). [CrossRef]
  6. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field in magnetic media,” Opt. Express 15, 13502–13518 (2007). [CrossRef]
  7. B. Kemp, T. Grzegorczyk, and J. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13, 9280–9291 (2005). [CrossRef]
  8. S. M. Kim and G. Gbur, “Momentum conservation in partially coherent wave fields,” Phys. Rev. A 79, 033844 (2009). [CrossRef]
  9. W. Wang and M. Takeda, “Linear and angular coherence momenta in the classical second-order coherence theory of vector electromagnetic fields,” Opt. Lett. 31, 2520–2522 (2006). [CrossRef]
  10. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A 14, 3366–3371(1997). [CrossRef]
  11. P. S. Carney, E. Wolf, and G. S. Agarwal, “Diffraction tomography using power extinction measurements,” J. Opt. Soc. Am. A 16, 2643–2648 (1999). [CrossRef]
  12. N. Garcia and M. Nieto-Vesperinas, “Near field inverse scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993). [CrossRef]
  13. N. Garcia and M. Nieto-Vesperinas, “Direct solution to the inverse scattering problem without phase retrieval,” Opt. Lett. 20, 949–951 (1995). [CrossRef]
  14. N. Garcia, V. Celli, and M. Nieto-Vesperinas, “Exact multiple scattering of waves from random rough surfaces,” Opt. Commun. 30, 279–281 (1979). [CrossRef]
  15. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395(2007). [CrossRef]
  16. C. Zha, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009). [CrossRef]
  17. Ch. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009). [CrossRef]
  18. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Phil. Trans. R. Soc. A 362, 719–737 (2004). [CrossRef]
  19. K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010). [CrossRef]
  20. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007). [CrossRef]
  21. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature 3, 477–480 (2007).
  22. S. Albaladejo, M. I. Marque, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009). [CrossRef]
  23. P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic force on a metallic particle in the presence of a dielectric surface,” Phys. Rev. B 62, 11185–11191 (2000). [CrossRef]
  24. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  25. J. Perina, Coherence of Light (Springer-Verlag, 1985).
  26. D. F. V. James and E. Wolf, “Some new aspects of young interference experiment,” Phys. Lett. 157, 6–10 (1991). [CrossRef]
  27. D. F. V. James and E. Wolf, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771–818 (1996). [CrossRef]
  28. A. Dogariu and E. Wolf, “Coherence theory of pairs of correlated wave fields,” J. Mod. Opt. 50, 1791–1796 (2003). [CrossRef]
  29. B. J. Thompson and E. Wolf, “Two-beam interference with partially coherent light,” J. Opt. Soc. Am. A 47, 895 (1957). [CrossRef]
  30. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010). [CrossRef]
  31. A. García-Etxarri, R. Gómez-Medina,, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). [CrossRef]
  32. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011). [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  34. It is well known that the Eq. (23) expression is one of the “smoothing” alternatives to estimate the cross-spectral density of the random process E(r,t) considered as truncated in time beyond |t|=T [24,25,33]. Another way is to write [37] E˜jk(r,r′,ω)=limΔω→0∫ω−Δω/2ω+Δω/2<E˜j*(r,ω)E˜k(r′,ω′)>dω′.
  35. J. T. Rubin and L. Deych, “On optical forces in spherical whispering gallery mode resonators,” Opt. Express 19, 22337–22349 (2011). [CrossRef]
  36. “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  37. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  38. J. W. Goodmam, Introduction to Fourier Optics (McGraw-Hill, 1996).
  39. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).
  40. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  41. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003). [CrossRef]
  42. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer-Verlag, 1989), Vol. 3.
  43. J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, “Recovery of optical parameters in multiple-layered diffusive media: theory and experiments,” J. Opt. Soc. Am. A 18, 821–830 (2001). [CrossRef]
  44. J. Riley, H. Dehghani, M. Schweiger, S. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000). [CrossRef]
  45. A. García-Martin, J. A. Torres, J. J. Sáenz, and M. Nieto-Vesperinas, “Transition from diffusive to localized regimes in surface corrugated optical waveguides,” Appl. Phys. Lett. 71, 1912–1914 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited