OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1459–1469

Scalar diffraction field calculation from curved surfaces via Gaussian beam decomposition

Erdem Şahin and Levent Onural  »View Author Affiliations


JOSA A, Vol. 29, Issue 7, pp. 1459-1469 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001459


View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a local signal decomposition method for the analysis of three-dimensional (3D) diffraction fields involving curved surfaces. We decompose a given field on a two-dimensional curved surface into a sum of properly shifted and modulated Gaussian-shaped elementary signals. Then we write the 3D diffraction field as a sum of Gaussian beams, each of which corresponds to a modulated Gaussian window function on the curved surface. The Gaussian beams are propagated according to a derived approximate expression that is based on the Rayleigh–Sommerfeld diffraction model. We assume that the given curved surface is smooth enough that the Gaussian window functions on it can be treated as written on planar patches. For the surfaces that satisfy this assumption, the simulation results show that the proposed method produces quite accurate 3D field solutions.

© 2012 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.1995) Holography : Digital holography
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: March 9, 2012
Manuscript Accepted: April 26, 2012
Published: June 29, 2012

Citation
Erdem Şahin and Levent Onural, "Scalar diffraction field calculation from curved surfaces via Gaussian beam decomposition," J. Opt. Soc. Am. A 29, 1459-1469 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-7-1459

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited