OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1588–1596

Concise formulation of the three-dimensional multiple-scattering theory

Laurent Oyhenart and Valérie Vignéras  »View Author Affiliations


JOSA A, Vol. 29, Issue 8, pp. 1588-1596 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001588


View Full Text Article

Enhanced HTML    Acrobat PDF (1147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering of an electromagnetic wave by a set of dielectric and metallic spheres is a well-known physical problem. We show a mathematical simplification of the multiple-scattering theory. In this paper, we will establish the multiple-scattering equation in two different ways. Through the study of the equation form, we can choose the simplest spherical wave expansion for calculations. Then, we propose concise expressions of the Mie scattering coefficients and translation coefficients for both polarizations. With these simplified expressions, large spheres are studied without loss of accuracy. Far-field expressions, cross-sections, and the scattering matrix are also simplified. Thus, we obtain formulas that can be easily understood from a physical point of view.

© 2012 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering

ToC Category:
Scattering

History
Original Manuscript: May 7, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 25, 2012
Published: July 19, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Laurent Oyhenart and Valérie Vignéras, "Concise formulation of the three-dimensional multiple-scattering theory," J. Opt. Soc. Am. A 29, 1588-1596 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-8-1588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Rayleigh, “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).
  2. L. V. Lorenz, “Sur la lumière réfléchie et réfractée par une sphère transparente,” in Œuvre Scientifiques de Lorenz, H. Valentiner ed. (Lehman et Stage, 1898), pp. 405–529.
  3. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloider Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  4. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
  5. J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955). [CrossRef]
  6. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. A 433, 599–614 (1991). [CrossRef]
  7. Y.-L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995). [CrossRef]
  8. L. Oyhenart and V. Vignéras, “Study of finite periodic structures using the generalized Mie theory,” Eur. Phys. J. Appl. Phys. 39, 95–100 (2007). [CrossRef]
  9. L. Oyhenart and V. Vignéras, “Overview of computational methods for photonic crystals,” in Photonic Crystals, A. Massaro, ed. (Intech, 2012), pp. 267–290.
  10. N. Eaton, “Comet dust—applications of Mie scattering,” Vistas Astron. 27, 111–129 (1984). [CrossRef]
  11. G. E. Thomas and K. Samnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999).
  12. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, “Multiple scattering by random particulate media: exact 3D results,” Opt. Express 15, 2822–2836 (2007). [CrossRef]
  13. J. A. Stratton, Théorie de l’électromagnétisme (Dunod, 1961).
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  15. A. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).
  16. O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).
  17. M. Defos du Rau, F. Pessan, G. Ruffie, V. Vigneras-Lefebvre, and J. P. Parneix, “Scattering and coupling effects of electromagnetic waves in 3D networks of spheres,” Eur. Phys. J. Appl. Phys. 1, 45–52 (1998). [CrossRef]
  18. M. I. Mishchenko, “Light scattering by random oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  19. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  20. X. Wang, X.-G. Zhang, Q. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161–4167 (1993). [CrossRef]
  21. J. D. Jackson, Electrodynamique Classique (Dunod, 2001).
  22. J. Korringa, “On the calculation of the energy of a Bloch wave in a metal,” Physica 13, 392–400 (1947). [CrossRef]
  23. W. Kohn and N. Rostoker, “Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium,” Phys. Rev. 94, 1111–1120 (1954). [CrossRef]
  24. L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves (Wiley, 2001).
  25. A. Moroz, “Density-of-states calculations and multiple-scattering theory for photons,” Phys. Rev. B 51, 2068–2081 (1995). [CrossRef]
  26. L. Tsang and J. A. Kong, “Effective propagation constants for coherent electromagnetic wave propagation in media embedded with dielectric scatters,” J. Appl. Phys. 53, 7162–7173 (1982). [CrossRef]
  27. Y. L. Xu and Bo A. S. Gustafson, “Experimental and theoretical results of light scattering by aggregate of spheres,” Appl. Opt. 36, 8026–8030 (1997). [CrossRef]
  28. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres: far field,” Appl. Phys. 36, 9496–9508 (1997).
  29. Y. L. Xu and Bo A. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transfer 70, 395–419 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited