OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1680–1685

Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel

Monire Faridzadeh, Asghar Gholami, Zabih Ghassemlooy, and Sujan Rajbhandari  »View Author Affiliations


JOSA A, Vol. 29, Issue 8, pp. 1680-1685 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001680


View Full Text Article

Enhanced HTML    Acrobat PDF (452 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a hybrid modulation scheme based on pulse position modulation (PPM) and binary phase shift keying subcarrier intensity modulation (BPSK-SIM) schemes for free-space optical communications is proposed. The analytical bit error rate (BER) performance is investigated in weak and saturated turbulence channels and results are verified with the simulation data. Results show that performance of PPM-BPSK-SIM is superior to BPSK-SIM in all turbulence regimes; however, it outperforms 2-PPM for the turbulence variance σ12>0.2. PPM-BPSK-SIM offers a signal-to-noise ratio (SNR) gain of 50 dB in the saturation regime compared to BPSK at a BER of 106. The SNR gain in comparison to PPM improves as the strength of the turbulence level increases.

© 2012 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 23, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 24, 2012
Published: July 25, 2012

Citation
Monire Faridzadeh, Asghar Gholami, Zabih Ghassemlooy, and Sujan Rajbhandari, "Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel," J. Opt. Soc. Am. A 29, 1680-1685 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-8-1680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Ghassemlooy and W. O. Popoola, “Terrestrial free-space optical communications,” in Mobile and Wireless Communications Network Layer and Circuit Level Design, S. A. Fares and F. Adachi, eds. (InTech, 2010), pp. 355–392.
  2. W. O. Popoola, “Subcarrier intensity modulated free space optical communication systems,” Ph.D. dissertation (Northumbria University, 2009).
  3. A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun 60, 479–487 (2012). [CrossRef]
  4. N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.
  5. B. Braua and D. Barua, “Channel capacity of MIMO FSO under strong turbulent conditions,” Int. J. Comput. Sci. 11, 1–5 (2011).
  6. N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009). [CrossRef]
  7. F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009). [CrossRef]
  8. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001). [CrossRef]
  9. W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol. 27, 967–973 (2009). [CrossRef]
  10. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002). [CrossRef]
  11. W. Gappmair, S. Hranilovic, and E. Leitgeb, “OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions,” IEEE Commun. Lett. 15, 875–877 (2011). [CrossRef]
  12. E. J. Lee and V. W. S. Chan, “Optical communications over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22, 1896–1906 (2004). [CrossRef]
  13. V. W. S. Chan, “Free-space optical communications,” IEEE J. Lightwave Technol. 24, 4750–4762 (2006). [CrossRef]
  14. L. A. Ambrosio, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, “Overcoming diffraction in FSO systems using (GRIN) axicons for approximating the longitudinal intensity profiles,” J. Lightwave Technol. 29, 2527–2532 (2011). [CrossRef]
  15. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Commun. 6, 2813–2819 (2007). [CrossRef]
  16. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009). [CrossRef]
  17. M. Uysal, J. T. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Commun. 5, 1229–1233 (2006). [CrossRef]
  18. T. Weyrauch and M. A. Vorontsov, “Free-space laser communications with adaptive optics: Atmospheric compensation experiments,” J. Opt. Fiber Commun. Res. 1, 355–379 (2004). [CrossRef]
  19. M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1, 580–593 (2009). [CrossRef]
  20. J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007). [CrossRef]
  21. G. R. Osche, Optical Detection Theory for Laser Applications1st ed. (Wiley, 2002).
  22. R. Ramirez-Iniguez, S. M. Idrus, and Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (Auerbach, 2008).
  23. H. Hemmati, ed., Deep Space Optical Communications, Deep Space Communications and Navigation Series (Wiley, 2006).
  24. K. K. Wong, T. O’Farrell, and M. Kiatweerasakul, “The performance of optical wireless OOK, 2-PPM and spread spectrum under the effects of multipath dispersion and artificial light interference,” Int. J. Commun. Syst. 13, 551–576 (2000). [CrossRef]
  25. X. Fang, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” J. Opt. Commun. Netw. 1, 404–415 (2009). [CrossRef]
  26. H. Rongqing, Z. Benyuan, H. Renxiang, T. A. Christopher, R. D. Kenneth, and R. Douglas, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20, 417–427(2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited