OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1707–1716

Scintillation resistant wavefront sensing based on multi-aperture phase reconstruction technique

Mathieu Aubailly and Mikhail A. Vorontsov  »View Author Affiliations

JOSA A, Vol. 29, Issue 8, pp. 1707-1716 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scintillation resistant sensor that allows retrieval of an input optical wave phase using a multi-aperture phase reconstruction (MAPR) technique is introduced and analyzed. The MAPR sensor is based on a low-resolution lenslet array in the classical Shack–Hartmann arrangement and two high-resolution photo-arrays for simultaneous measurements of pupil- and focal-plane intensity distributions, which are used for retrieval of the wavefront phase in a two stage process: (a) phase reconstruction inside the sensor pupil subregions corresponding to lenslet subapertures and (b) recovery of subaperture averaged phase components (piston phases). Numerical simulations demonstrate the efficiency of the MAPR technique in conditions of strong intensity scintillations and the presence of wavefront branch points.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.5070) Image processing : Phase retrieval

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: January 3, 2012
Revised Manuscript: April 6, 2012
Manuscript Accepted: June 13, 2012
Published: July 27, 2012

Mathieu Aubailly and Mikhail A. Vorontsov, "Scintillation resistant wavefront sensing based on multi-aperture phase reconstruction technique," J. Opt. Soc. Am. A 29, 1707-1716 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. U. Zavorotnyi, “Strong fluctuations of the wave intensity behind a randomly inhomogeneous layer,” Radiophys. Quantum Electron. 22, 352–354 (1979). [CrossRef]
  2. M. C. Rytov, Yu A. Kravtsov, and V. I. Tatarskii, eds., Principles of Statistical Radiophysics 4, Wave Propagation Through Random Media (Springer-Verlag, 1989).
  3. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16, 1417–1429 (1999). [CrossRef]
  4. J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).
  5. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of Hartmann sensors in strong scintillation,” Appl. Opt. 41, 1012–1021 (2002). [CrossRef]
  6. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef]
  7. G. Rousset, “Wave-front sensors,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge University, 1999), pp. 91–130.
  8. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977). [CrossRef]
  9. D. G. Sandler, L. Cuellar, M. Lefebvre, T. Barrett, R. Arnold, P. Johnson, A. Rego, G. Smith, G. Taylor, and B. Spivey, “Shearing interferometry for laser-guide-star atmospheric correction at large D/r0,” J. Opt. Soc. Am. 11, 858–873 (1994). [CrossRef]
  10. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  11. R. A. Gonsalves, “Phase retrieval from modulus data,” J. Opt. Soc. Am. 66, 961–964 (1976). [CrossRef]
  12. V. Y. Ivanov, V. P. Sivokon, and M. A. Vorontsov, “Phase retrieval from a set of intensity measurements: theory and experiment,” J. Opt. Soc. Am. 9, 1515–1524 (1992). [CrossRef]
  13. R. G. Paxman and J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  14. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  15. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907 (1986). [CrossRef]
  16. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998). [CrossRef]
  17. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992). [CrossRef]
  18. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998). [CrossRef]
  19. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  20. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC, 1996).
  21. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982). [CrossRef]
  22. E. W. Justh, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, and P. S. Krishnaprasad, “Adaptive optics with advanced phase-contrast techniques. II. high-resolution wave-front control,” J. Opt. Soc. Am. A 18, 1300–1311 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited