OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1722–1727

Large-angle scattered light measurements for quantum-noise filter cavity design studies

Fabian Magaña-Sandoval, Rana X. Adhikari, Valera Frolov, Jan Harms, Jacqueline Lee, Shannon Sankar, Peter R. Saulson, and Joshua R. Smith  »View Author Affiliations


JOSA A, Vol. 29, Issue 8, pp. 1722-1727 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001722


View Full Text Article

Enhanced HTML    Acrobat PDF (710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical loss from scattered light could limit the performance of quantum-noise filter cavities being considered for an upgrade to the Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) gravitational-wave detectors. This paper describes imaging scatterometer measurements of the large-angle scattered light from two high-quality sample optics, a high reflector and a beamsplitter. These optics are each superpolished fused silica substrates with silica:tantala dielectric coatings. They represent the current state-of-the art optical technology for use in filter cavities. We present angle-resolved scatter values and integrate these to estimate the total scatter over the measured angles. We find that the total integrated light scattered into larger angles can be as small as 4 ppm.

© 2012 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(230.1360) Optical devices : Beam splitters
(290.1483) Scattering : BSDF, BRDF, and BTDF

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 25, 2012
Manuscript Accepted: June 25, 2012
Published: July 27, 2012

Citation
Fabian Magaña-Sandoval, Rana X. Adhikari, Valera Frolov, Jan Harms, Jacqueline Lee, Shannon Sankar, Peter R. Saulson, and Joshua R. Smith, "Large-angle scattered light measurements for quantum-noise filter cavity design studies," J. Opt. Soc. Am. A 29, 1722-1727 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-8-1722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Smith for the LIGO Scientific Collaboration, “The path to the enhanced and advanced LIGO gravitational-wave detectors,” Class.l Quantum Grav. 26, 114013 (2009). [CrossRef]
  2. The VIRGO Collaboration, “Advanced virgo baseline design,” VIRGO Collaboration, VIR 027A 09 (2009).
  3. K. Kuroda (on behalf of the LCGT Collaboration), “Status of LCGT,” Class. Quantum Grav. 27, 084004 (2010). [CrossRef]
  4. The LIGO Scientific Collaboration, “Instrument science white paper,” LIGO DCC p. T1100309-v5 (2011). https.dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62186
  5. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nature Physics 7, 962 (2011). [CrossRef]
  6. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001). [CrossRef]
  7. J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003). [CrossRef]
  8. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef]
  9. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992). [CrossRef]
  10. A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996). [CrossRef]
  11. A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).
  12. S. Sato, S. Miyoki, M. Ohashi, M. Fujimoto, T. Yamazaki, M. Fukushima, A. Ueda, K. Ueda, K. Watanabe, K. Nakamura, K. Etoh, N. Kitajima, K. Ito, and I. Kataoka, “Loss factors of mirrors for a gravitational wave antenna,” Appl. Opt. 38, 2880–2885 (1999). [CrossRef]
  13. The VIRGO Collaboration, “The VIRGO large mirrors: a challenge for low loss coatings,” Class. Quantum Grav. 21, S935–S945 (2004). [CrossRef]
  14. H. Yamamoto, “Effects of small size anomalies in a FP cavity,” LIGO DCC T1000154-v5 (2010). https.dcc-llo.ligo.org/cgi-bin/DocDB/ShowDocument?docid=10316
  15. C. J. Walsh, A. J. Leistner, and B. F. Oreb, “Power spectral density analysis of optical substrates for gravitational-wave interferometry,” Appl. Opt. 38, 4790–4801 (1999). [CrossRef]
  16. R. Blazey, “Light scattering by laser mirrors,” Appl. Opt. 6, 831–836 (1967). [CrossRef]
  17. M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008). [CrossRef]
  18. Y. L. Grand, J. P. Tach, and A. L. Floch, “Sensitive diffraction-loss measurements of transverse modes of optical cavities by the decay-time method,” J. Opt. Soc. Am. B 7, 1251–1253(1990). [CrossRef]
  19. G. M. Harry, T. P. Bodiya, and R. De Salvo, eds., Optical Coatings and Thermal Noise in Precision Measurement(Cambridge University, 2012).
  20. J. C. Stover, Optical Scattering2nd ed. (SPIE, 1995).
  21. C. Bruegge, N. Chrien, and D. Haner, “A spectralon brf data base for misr calibration applications,” Remote Sens. Environ. 77, 354–366 (2001). [CrossRef]
  22. A. Bhandari, B. Hamre, Ø. Frette, L. Zhao, J. J. Stamnes, and M. Kildemo, “Bidirectional reflectance distribution function of spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light,” Appl. Opt. 50, 2431–2442 (2011). [CrossRef]
  23. L. J. S. I. Michael and R. Cohen, “Diffuse reflectance measurements of standard diffusers,” http://www.4physics.com/tn3/lambertian.htm .
  24. P. Y. Bely, ed., The Design and Construction of Large Optical Telescopes (Springer-Verlag, 2003).
  25. B. Kells, “Scattered light loss from LIGO arm cavity mirrors,” LIGO DCC T0900128-v3 (2009). https.dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=1521

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited