OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1734–1740

Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals

Dmitry A. Bykov, Leonid L. Doskolovich, and Victor A. Soifer  »View Author Affiliations

JOSA A, Vol. 29, Issue 8, pp. 1734-1740 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general transformation of the optical pulse envelope implemented by a single-resonance diffraction grating is studied. The particular cases considered include optical pulse integration and differentiation implemented by the grating in the Wood anomalies and the fractional integration and differentiation of order 1/2 implemented in the Rayleigh–Wood anomalies. The extraordinary-optical-transmission plasmonic gratings are shown to be well suited for the integration in the transmission. Diffraction gratings to perform the integration and semi-integration of optical pulses with temporal features in the picosecond range are designed. Numerical simulations based on the rigorous coupled-wave analysis of Maxwell’s equations are in good agreement with presented theoretical analysis.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(320.5550) Ultrafast optics : Pulses

ToC Category:
Diffraction and Gratings

Original Manuscript: February 22, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: June 29, 2012
Published: July 31, 2012

Dmitry A. Bykov, Leonid L. Doskolovich, and Victor A. Soifer, "Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals," J. Opt. Soc. Am. A 29, 1734-1740 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  3. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008). [CrossRef]
  4. V. A. Soifer, ed., Diffraction Nanophotonics (in Russian) (Fizmatlit, 2011).
  5. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Giant transversal Kerr effect in magneto-plasmonic heterostructures: the scattering-matrix method,” J. Exp. Theor. Phys. 110, 816–824 (2010). [CrossRef]
  6. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvezdin, “Giant magneto-optical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009). [CrossRef]
  7. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). [CrossRef]
  8. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003). [CrossRef]
  9. V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970–984 (2006). [CrossRef]
  10. A. Akimov, N. Gippius, and S. Tikhodeev, “Optical Fano resonances in photonic crystal slabs near diffraction threshold anomalies,” JETP Lett. 93, 427–430 (2011). [CrossRef]
  11. T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10, 840–843 (2002).
  12. P. Vabishchevich, V. Bessonov, F. Sychev, M. Shcherbakov, T. Dolgova, and A. Fedyanin, “Femtosecond relaxation dynamics of surface plasmon-polaritons in the vicinity of Fano-type resonance,” JETP Lett. 92, 575–579 (2011). [CrossRef]
  13. M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express 15, 6152–6166 (2007). [CrossRef]
  14. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett. 33, 4–6 (2008). [CrossRef]
  15. M. A. Preciado and M. A. Muriel, “Ultrafast all-optical integrator based on a fiber Bragg grating: proposal and design,” Opt. Lett. 33, 1348–1350 (2008). [CrossRef]
  16. M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express 17, 19798–19807 (2009). [CrossRef]
  17. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15, 371–381 (2007). [CrossRef]
  18. Y. Park, M. Kulishov, R. Slavík, and J. Azaña, “Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings,” Opt. Express 14, 12670–12678 (2006). [CrossRef]
  19. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “Temporal differentiation of optical signals using resonant gratings,” Opt. Lett. 36, 3509–3511 (2011). [CrossRef]
  20. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A 18, 1912–1928 (2001). [CrossRef]
  21. A. Sato, “Analysis of finite-sized guided-mode resonant gratings using the fast multipole boundary element method,” J. Opt. Soc. Am. A 27, 1909–1919 (2010). [CrossRef]
  22. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, “On ability of resonant diffraction gratings to differentiate pulsed optical signal,” J. Exp. Theor. Phys. 114, 724–730 (2012). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 3rd ed. (Pergamon, 1965).
  24. N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Optical properties of photonic crystal slabs with an asymmetrical unit cell,” Phys. Rev. B 72, 045138 (2005). [CrossRef]
  25. N. A. Gippius, T. Weiss, S. G. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Opt. Express 18, 7569–7574 (2010). [CrossRef]
  26. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations Of Photonic Crystal Fibres (Imperial College, 2005).
  27. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover, 1964).
  28. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  29. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  30. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  31. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  32. A. Papoulis, The Fourier Integral and its Applications (McGraw-Hill, 1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited