OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 1808–1817

Three-dimensional reconstruction of particle holograms: a fast and accurate multiscale approach

Mozhdeh Seifi, Corinne Fournier, Loic Denis, Delphine Chareyron, and Jean-Louis Marié  »View Author Affiliations


JOSA A, Vol. 29, Issue 9, pp. 1808-1817 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001808


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In-line digital holography is an imaging technique that is being increasingly used for studying three-dimensional flows. It has been previously shown that very accurate reconstructions of objects could be achieved with the use of an inverse problem framework. Such approaches, however, suffer from higher computational times compared to less accurate conventional reconstructions based on hologram backpropagation. To overcome this computational issue, we propose a coarse-to-fine multiscale approach to strongly reduce the algorithm complexity. We illustrate that an accuracy comparable to that of state-of-the-art methods can be reached while accelerating parameter-space scanning.

© 2012 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.2000) Image processing : Digital image processing
(100.3190) Image processing : Inverse problems
(100.5010) Image processing : Pattern recognition
(100.6640) Image processing : Superresolution

ToC Category:
Holography

History
Original Manuscript: March 26, 2012
Revised Manuscript: June 25, 2012
Manuscript Accepted: June 27, 2012
Published: August 8, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Mozhdeh Seifi, Corinne Fournier, Loic Denis, Delphine Chareyron, and Jean-Louis Marié, "Three-dimensional reconstruction of particle holograms: a fast and accurate multiscale approach," J. Opt. Soc. Am. A 29, 1808-1817 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-9-1808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sheng, E. Malkiel, and J. Katz, “Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633, 17–60 (2009). [CrossRef]
  2. L. Huang, K. Kumar, and A. S. Mujumdar, “Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model,” Dry. Technol. 22, 1489–1515 (2004). [CrossRef]
  3. J. Reveillon and F. Demoulin, “Effects of the preferential segregation of droplets on evaporation and turbulent mixing,” J. Fluid Mech. 583, 273–302 (2007). [CrossRef]
  4. T. J. Pedley and J. O. Kessler, “Hydrodynamic phenomena in suspensions of swimming microorganisms,” Ann. Rev. Fluid Mech. 24, 313–358 (1992). [CrossRef]
  5. M. Ellero, M. Kröger, and S. Hess, “Viscoelastic flows studied by smoothed particle dynamics,” J. Non-Newton. Fluid Mech. 105, 35–51 (2002). [CrossRef]
  6. F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Ann. Rev. Fluid Mech. 41, 375–404 (2009). [CrossRef]
  7. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010). [CrossRef]
  8. Y. Choi and S. Lee, “Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow,” Microfluid. Nanofluid. 9, 819–829 (2010). [CrossRef]
  9. E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003). [CrossRef]
  10. S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005). [CrossRef]
  11. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, 1st ed. (Wiley-VCH, 2005).
  12. C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011). [CrossRef]
  13. Murata, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000). [CrossRef]
  14. M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004). [CrossRef]
  15. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003). [CrossRef]
  16. M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003). [CrossRef]
  17. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006). [CrossRef]
  18. J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008). [CrossRef]
  19. F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007). [CrossRef]
  20. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef]
  21. S. Lim, D. L. Marks, and D. J. Brady, “Sampling and processing for compressive holography [Invited],” Appl. Opt. 50, H75–H86 (2011). [CrossRef]
  22. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009). [CrossRef]
  23. Y. Rivenson, A. Stern, and B. Javidi, “Compressive fresnel holography,” J. Display Technol. 6, 506–509 (2010). [CrossRef]
  24. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef]
  25. L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett. 18, 846–848 (1993). [CrossRef]
  26. C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000). [CrossRef]
  27. S. Sotthivirat and J. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A 21, 737–750 (2004). [CrossRef]
  28. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography” J. Opt. Soc. Am. A 27, 1630–1637 (2010). [CrossRef]
  29. M. Marim, M. Atlan, E. Angelini, and J. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010). [CrossRef]
  30. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007). [CrossRef]
  31. H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5, 87–93 (1974). [CrossRef]
  32. D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012). [CrossRef]
  33. F. CH. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef]
  34. J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Series 15, 417–426 (1974).
  35. S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993). [CrossRef]
  36. L. Denis, D. A. Lorenz, and D. Trede, “Greedy solution of ill-posed problems: error bounds and exact inversion,” Inverse Probl. 25, 115017 (2009). [CrossRef]
  37. S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, 1st ed. (Prentice Hall, 1993).
  38. D. Needell and J. Tropp, “Cosamp: iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26, 301–321 (2009). [CrossRef]
  39. G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis—a reassessment,” J. Mod. Opt. 23, 685–700 (1976). [CrossRef]
  40. C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010). [CrossRef]
  41. http://www.fftw.org/ (visited on 10 July 2012).
  42. M. Unser, A. Aldroubi, and M. Eden, “The L2 polynomial spline pyramid,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–379 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited