Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional reconstruction of particle holograms: a fast and accurate multiscale approach

Not Accessible

Your library or personal account may give you access

Abstract

In-line digital holography is an imaging technique that is being increasingly used for studying three-dimensional flows. It has been previously shown that very accurate reconstructions of objects could be achieved with the use of an inverse problem framework. Such approaches, however, suffer from higher computational times compared to less accurate conventional reconstructions based on hologram backpropagation. To overcome this computational issue, we propose a coarse-to-fine multiscale approach to strongly reduce the algorithm complexity. We illustrate that an accuracy comparable to that of state-of-the-art methods can be reached while accelerating parameter-space scanning.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast and accurate 3D object recognition directly from digital holograms

Mozhdeh Seifi, Loic Denis, and Corinne Fournier
J. Opt. Soc. Am. A 30(11) 2216-2224 (2013)

Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach

Mozhdeh Seifi, Corinne Fournier, Nathalie Grosjean, Loic Méès, Jean-Louis Marié, and Loic Denis
Opt. Express 21(23) 27964-27980 (2013)

Inverse-problem approach for particle digital holography: accurate location based on local optimization

Ferréol Soulez, Loïc Denis, Corinne Fournier, Éric Thiébaut, and Charles Goepfert
J. Opt. Soc. Am. A 24(4) 1164-1171 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved