OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 1870–1876

X-ray phase contrast imaging of objects with subpixel-size inhomogeneities: a geometrical optics model

Sergei V. Gasilov and Paola Coan  »View Author Affiliations


JOSA A, Vol. 29, Issue 9, pp. 1870-1876 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001870


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several x-ray phase contrast extraction algorithms use a set of images acquired along the rocking curve of a perfect flat analyzer crystal to study the internal structure of objects. By measuring the angular shift of the rocking curve peak, one can determine the local deflections of the x-ray beam propagated through a sample. Additionally, some objects determine a broadening of the crystal rocking curve, which can be explained in terms of multiple refraction of x rays by many subpixel-size inhomogeneities contained in the sample. This fact may allow us to differentiate between materials and features characterized by different refraction properties. In the present work we derive an expression for the beam broadening in the form of a linear integral of the quantity related to statistical properties of the dielectric susceptibility distribution function of the object.

© 2012 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(340.7440) X-ray optics : X-ray imaging
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
X-ray Optics

History
Original Manuscript: March 28, 2012
Revised Manuscript: July 4, 2012
Manuscript Accepted: July 10, 2012
Published: August 15, 2012

Citation
Sergei V. Gasilov and Paola Coan, "X-ray phase contrast imaging of objects with subpixel-size inhomogeneities: a geometrical optics model," J. Opt. Soc. Am. A 29, 1870-1876 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-9-1870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Fitzgerald, “Phase-sensitive x-ray imaging,” Phys. Today 53(7), 23–26 (2000). [CrossRef]
  2. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573–3583 (2004). [CrossRef]
  3. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997). [CrossRef]
  4. M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875–3895 (2003). [CrossRef]
  5. L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new DEI algorithm capable of investigating sub-pixel structures,” J. Phys. D 36, A107–A112 (2003). [CrossRef]
  6. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Bronnimann, C. Grunzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008). [CrossRef]
  7. J. Keyrilainen, M. Fernandez, M. L. Karjalainen-Lindsberg, P. Virkkunen, M. Leidenius, K. von Smitten, P. Sipila, S. Fiedler, H. Suhonen, P. Suortti, and A. Bravin, “Towards high-contrast breast CT at low radiation dose,” Radiology 249, 321–327 (2008). [CrossRef]
  8. A. Sztrokay, P. C. Diemoz, T. Schlossbauer, E. Brun, F. Bamberg, D. Mayr, M. F. Reiser, A. Bravin, and P. Coan, “High resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast,” Phys. Med. Biol. 57, 2931–2942 (2012). [CrossRef]
  9. A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–376 (1981). [CrossRef]
  10. G. W. Faris and R. L. Byer, “Three-dimensional beam deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988). [CrossRef]
  11. V. A. Bushuev and A. A. Sergeev, “Inverse problem in the x-ray phase contrast method,” Tech. Phys. Lett. 25, 83–85 (1999). [CrossRef]
  12. C. M. Slack, “The refraction of x-rays in prisms of various materials,” Phys. Rev. 27, 691–695 (1926). [CrossRef]
  13. L. Rigon, F. Arfelli, and R. H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90, 114102 (2007). [CrossRef]
  14. M. Bech, O. Bunk, T. Donath, R. Feidenhans, C. David, and F. Pfeiffer, “Quantitative x-ray dark-field computed tomography,” Phys. Med. Biol. 55, 5529–5539 (2010). [CrossRef]
  15. L. Rigon, A. Astolfo, F. Arfelli, and R. H. Menk, “Generalized diffraction enhanced imaging: application to tomography,” Eur. J. Radiol. 68, S3–S7 (2008). [CrossRef]
  16. M. Bech, “Scattering dependence on sample thickness” in X-ray Imaging with a Grating Interferometer, Ph.D. thesis (Faculty of Science, University of Copenhagen, 2009), p. 44.
  17. G. Khelashvili, J. G. Brankov, D. Chapman, M. A. Anastasio, Y. Yang, Z. Zhong, and M. N. Wernick, “A physical model of multiple-image radiography,” Phys. Med. Biol. 51, 221–236 (2006). [CrossRef]
  18. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, “Propagation of waves in mediums with large-scale inhomogeneities. Geometrical optics method,” in Vol. 2 of Principles of Statistical Radiophysics (Springer-Verlag, 1988).
  19. A. S. Gurvich and M. A. Kallistratova, “Experimental study of the fluctuations in angle of incidence of a light beam under conditions of strong intensity fluctuations,” Radiophys. Quantum Electron. 11, 37–40 (1968). [CrossRef]
  20. L. Mandel and E. Wolf, “Radiation from some model sources,” in Optical Coherence and Quantum Optics (Cambridge University, 1995), p. 234.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited