OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 1927–1938

Wigner functions for evanescent waves

Jonathan C. Petruccelli, Lei Tian, Se Baek Oh, and George Barbastathis  »View Author Affiliations


JOSA A, Vol. 29, Issue 9, pp. 1927-1938 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001927


View Full Text Article

Enhanced HTML    Acrobat PDF (2050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.0260) Physical optics : Physical optics
(050.5082) Diffraction and gratings : Phase space in wave options

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: July 12, 2012
Revised Manuscript: July 12, 2012
Manuscript Accepted: July 15, 2012
Published: August 23, 2012

Citation
Jonathan C. Petruccelli, Lei Tian, Se Baek Oh, and George Barbastathis, "Wigner functions for evanescent waves," J. Opt. Soc. Am. A 29, 1927-1938 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-9-1927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, 1983).
  2. A. T. Friberg, “On the existence of a radiance function for finite planar sources of arbitrary states of coherence,” J. Opt. Soc. Am. 69, 192–198 (1979). [CrossRef]
  3. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  4. L. Dolin, “Beam description of weakly inhomogeneous wave fields,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7, 559–562 (1964).
  5. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968). [CrossRef]
  6. K. B. Wolf, M. A. Alonso, and G. W. Forbes, “Wigner functions for Helmholtz wave fields,” J. Opt. Soc. Am. A 16, 2476–2487 (1999). [CrossRef]
  7. M. A. Alonso, “Radiometry and wide-angle wave fields. I. Coherent fields in two dimensions,” J. Opt. Soc. Am. A 18, 902–909 (2001). [CrossRef]
  8. C. J. R. Sheppard and K. G. Larkin, “Wigner function for nonparaxial wave fields,” J. Opt. Soc. Am. A 18, 2486–2490 (2001). [CrossRef]
  9. J. C. Petruccelli and M. A. Alonso, “Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions,” J. Opt. Soc. Am. A 24, 2590–2603 (2007). [CrossRef]
  10. M. A. Alonso, “Radiometry and wide-angle wave fields III: partial coherence,” J. Opt. Soc. Am. A 18, 2502–2511 (2001). [CrossRef]
  11. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos–Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000). [CrossRef]
  12. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436, 333–346 (1947). [CrossRef]
  13. S. B. Oh, J. C. Petruccelli, L. Tian, and G. Barbastathis, “Wigner functions defined with Laplace transform kernels,” Opt. Express 19, 21938–21944 (2011). [CrossRef]
  14. L. Q. Wang, L. G. Wang, S. Y. Shu, and M. S. Zubairy, “The influence of spatial coherence on the Goos–Hänchen shift at total internal reflection,” J. Phys. B 41, 055401 (2008). [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 160–176.
  16. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 287–292.
  17. M. A. Alonso, “Measurement of Helmholtz wave fields,” J. Opt. Soc. Am. A 17, 1256–1264 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited