OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 1948–1955

Influence of affective image content on subjective quality assessment

Ian van der Linde and Rachel M. Doe  »View Author Affiliations


JOSA A, Vol. 29, Issue 9, pp. 1948-1955 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001948


View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Image quality assessment (IQA) enables distortions introduced into an image (e.g., through lossy compression or broadcast) to be measured and evaluated for severity. It is unclear to what degree affective image content may influence this process. In this study, participants (n=25) were found to be unable to disentangle affective image content from objective image quality in a standard IQA procedure (single stimulus numerical categorical scale). We propose that this issue is worthy of consideration, particularly in single stimulus IQA techniques, in which a small number of handpicked images, not necessarily representative of the gamut of affect seen in true broadcasting, and unrated for affective content, serve as stimuli.

© 2012 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(330.5020) Vision, color, and visual optics : Perception psychology

ToC Category:
Imaging Systems

History
Original Manuscript: June 4, 2012
Revised Manuscript: July 26, 2012
Manuscript Accepted: August 6, 2012
Published: August 27, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Ian van der Linde and Rachel M. Doe, "Influence of affective image content on subjective quality assessment," J. Opt. Soc. Am. A 29, 1948-1955 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-9-1948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Seshadrinathan, R. J. Safranek, J. Chen, T. N. Pappas, H. R. Sheikh, E. P. Simoncelli, Z. Wang, and A. C. Bovik, “Image quality assessment,” in The Essential Guide to Image Processing, A. C. Bovik, ed. (Academic, 2009), Chap. 20.
  2. K. Seshadrinathan and A. C. Bovik, “Video quality assessment,” in The Essential Guide to Video Processing, A. C. Bovik, ed. (Academic, 2009), Chap. 14.
  3. W. Lin and C.-C. Jay Kuo, “Perceptual quality metrics: a survey,” J. Visual Commun. Image Represent. 22, 297–312 (2011). [CrossRef]
  4. H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Trans. Image Process. 15, 430–444 (2006). [CrossRef]
  5. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed. (Chapman and Hall/CRC, 2011).
  6. A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun. 43, 2959–2965 (1995). [CrossRef]
  7. A. M. van Dijk, J.-B. Martens, and A. B. Watson, “Quality assessment of coded images using numerical category scaling,” Proc. SPIE 2451, 90–101 (1995). [CrossRef]
  8. U. Rajashekar, I. van der Linde, A. C. Bovik, and L. K. Cormack, “Foveated analysis of image features at visual fixations,” Vis. Res. 47, 3160–3172 (2007). [CrossRef]
  9. A. P. Hekstra, J. G. Beerends, D. Ledermann, F. E. De Caluwe, S. Kohler, R. H. Koenen, S. Rihs, M. Ehrsam, and D. Schlauss, “PVQM: a perceptual video quality measure,” Signal Process. Image Commun. 17, 781–798 (2002). [CrossRef]
  10. D. M. Chandler and S. S. Hemami, “VSNR: a wavelet-based visual signal-to-noise ratio for natural images,” IEEE Trans. Image Process. 16, 2284–2298 (2007). [CrossRef]
  11. K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, “Study of subjective and objective quality assessment of video,” IEEE Trans. Image Process. 19, 1427–1441 (2010). [CrossRef]
  12. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). [CrossRef]
  13. N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9, 636–650 (2000). [CrossRef]
  14. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error measurement to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004). [CrossRef]
  15. A. K. Moorthy and A. C. Bovik, “Visual importance pooling for image quality assessment,” IEEE J. Sel. Top. Signal Process. 3, 193–201 (2009). [CrossRef]
  16. Z. Wang, H. R. Sheikh, and A. C. Bovik, “Objective video quality assessment,” in The Handbook of Video Databases: Design and Applications, B. Furht and O. Marqure, eds. (CRC, 2003), pp 1041–1078.
  17. H. R. Sheikh, Z. Wang, L. K. Cormack, and A. C. Bovik, “LIVE image quality assessment database, Release 2,” http://live.ece.utexas.edu/research/quality/subjective.htm .
  18. P. Le Callet and F. Autrusseau, “Subjective quality assessment IRCCyN/IVC database,” http://www.irccyn.ec-nantes.fr/ivcdb/ .
  19. E. C. Larson and D. M. Chandler, “Most apparent distortion: full-reference image quality assessment and the role of strategy,” J. Electron. Imaging 19, 011006 (2010). [CrossRef]
  20. N. Ponomarenko, M. Carli, V. Lukin, K. Egiazarian, J. Astola, and F. Battisti, “Tampere Image Database,” http://www.ponomarenko.info/tid2008.htm .
  21. N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti, “TID2008—A database for evaluation of full-reference visual quality assessment metrics,” Adv. Mod. Radioelectron. 10, 30–45 (2009).
  22. Z. M. Parvez Sazzad, Y. Kawayoke, and Y. Horita, “Image quality evaluation database,” http://mict.eng.utoyama.ac.jp/database_toyama .
  23. U. Engelke, H.-J. Zepernick, and T. M. Kusuma, “Wireless imaging quality database,” http://www.bth.se/tek/rcg.nsf/pages/wiq-db .
  24. R. Franzen, “Kodak Lossless True Color Image Suite,” http://r0k.us/graphics/kodak/ .
  25. S. Tourancheau, F. Autrusseau, Z. M. P. Sazzad, and Y. Horita, “Impact of subjective dataset on the performance of image quality metrics,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 365–368.
  26. S. Winker, “Issues in vision modeling for perceptual video quality assessment,” Signal Process. 78, 231–252 (1999). [CrossRef]
  27. C. Li and T. Chen, “Aesthetic visual quality assessment of paintings,” IEEE J. Sel. Top. Signal Process. 3, 236–252(2009). [CrossRef]
  28. A. K. Moorthy and A. C. Bovik, “Visual quality assessment: what does the future hold?” Multimedia Tools Appl. 51, 675–696 (2011). [CrossRef]
  29. P. Kortum and M. Sullivan, “The effect of content desirability on subjective video quality ratings,” Hum. Factors 52, 105–118 (2010). [CrossRef]
  30. P. J. Lang, M. K. Greenwald, M. M. Bradley, and A. O. Hamm, “Looking at pictures: Affective, facial, visceral, and behavioral reactions,” Psychophysiology 30, 261–273 (1993). [CrossRef]
  31. B. N. Cuthbert, H. T. Schupp, M. M. Bradley, N. Burbaumer, and P. J. Lang, “Brain potentials in affective picture processing: covariation with autonomic arousal and affective report,” Biol. Psychol. 52, 95–111 (1999). [CrossRef]
  32. S. Anders, M. Lotze, M. Erb, W. Grodd, and N. Birbaumer, “Brain activity underlying emotional valence and arousal: a response-related fMRI study,” Hum. Brain Mapp. 23, 200–209 (2004). [CrossRef]
  33. J. Ni, Huihui Jiang, Y. Jin, N. Chen, J. Wang, Z. Wang, Y. Luo, Y. Ma, and X. Hu, “Dissociable modulation of overt visual attention in valence and arousal revealed by topology of scan path,” PLoS ONE 6, e18262 (2011). [CrossRef]
  34. A. L. Barrowcliff, N. S. Gray, T. C. A. Freeman, and M. J. McCulloch, “Eye-movements reduce the vividness, emotional valence and electrodermal arousal associated with negative autobiographical memories,” J. Forens. Psychiatry Psychol. 15, 325–345 (2004). [CrossRef]
  35. P. J. Lang, M. M. Bradley, and B. N. Cuthbert, “International affective picture system (IAPS): instruction manual and affective ratings,” Technical Report A-4 (The Center for Research in Psychophysiology, University of Florida, 1999).
  36. E. S. Dan-Glauser and K. R. Scherer, “The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance,” Behav. Res. Meth. 43, 468–477 (2011). [CrossRef]
  37. G. K. Wallace, “The JPEG still picture compression standard,” Commun. ACM 34, 30–44 (1991). [CrossRef]
  38. ITU-R BT.1082, http://www.itu.int/ .
  39. H. de Ridder and G. M. Majoor, “Numerical category scaling: an efficient method for assessing digital image coding impairments,” Proc. SPIE 1249, 65 (1990). [CrossRef]
  40. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, 1974).
  41. ITU-R BT.500-13, “Methodology for the subjective assessment of the quality of television pictures,” http://www.itu.int/ .
  42. R. Datta, J. Li, and J. Z. Wang, “Algorithmic inferencing of aesthetics and emotion in natural images: an exposition,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp 105–108.
  43. J. Cohen, “A power primer,” Psychol. Bull. 112, 155–159 (1992). [CrossRef]
  44. R. Gregory, The Intelligent Eye (Weidenfeld and Nicholson, 1970).
  45. J. S. Bruner and C. C. Goodman, “Value and need as organizing factors in perception,” J. Abnormal Psych. 42, 33–44 (1947). [CrossRef]
  46. M. Veltkamp, H. Aarts, and R. Custers, “Perception in the service of goal pursuit: motivation to attain goals enhances the perceived size of goal-instrumental objects,” Soc. Cogn. 26, 720–736 (2008). [CrossRef]
  47. M. Bhalla and D. R. Proffitt, “Visual-motor recalibration in geographical slant perception,” J. Exp. Psychol. Hum. Percept. Perform. 25, 1076–1096 (1999). [CrossRef]
  48. N. Schwarz and G. L. Clore, “Mood, misattribution, and judgments of well-bring: Informative and reactive functions of affective states,” J. Pers. Soc. Well-Being 45513–523 (1983).
  49. G. Gorn, M. T. Pham, and L. Y. Sin, “When arousal influences ad evaluation and valence does not (and vice versa),” J. Consumer Psychol. 11, 43–55 (2001). [CrossRef]
  50. A. L. Bouhuys, G. M. Bloem, and T. G. G. Groothius, “Induction of depressed and elated mood by music influences the perception of facial emotional expressions in healthy subjects,” J. Affective Disord. 33, 215–226 (1995). [CrossRef]
  51. M. M. Bradley, M. K. Greenwald, M. C. Petry, and P. J. Lang, “Remembering pictures: pleasure and arousal in memory,” J. Exper. Psychol. Learn. Mem. Cogn. 18, 379–390 (1992). [CrossRef]
  52. A. E. Savakis, S. P. Etz, and A. C. Loui, “Evaluation of image appeal in consumer photography,” Proc. SPIE 3959, 111–120 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited