OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 1965–1976

Possible optical functions of the central core in lenses of trilobite eyes: spherically corrected monofocality or bifocality

Ádám Egri and Gábor Horváth  »View Author Affiliations

JOSA A, Vol. 29, Issue 9, pp. 1965-1976 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The function of the central core in lenses of certain schizochroal-eyed trilobites is unknown. To understand the possible optical function(s) of this central core, we performed computational ray-tracing on the lens in the schizochroal compound eyes of a Silurian Dalmanites trilobite. We computed the intensity of light focused by the lens versus the distance from the lower lens surface along the optical axis as functions of the refractive indices n lu and n cc of the lower lens unit and the central core. We determined those values of n lu and n cc that ensure that the studied central-cored trilobite lens is monofocal, bifocal, or trifocal. The sharpness (as the measure of the correction for spherical aberration) of these focal points was quantitatively studied. We show here that one of the possible optical functions of the central core could be the correction for spherical aberration, independently of the number (1, 2, or 3) of focal points. Another possible optical function of the core could be to ensure bifocality of the lens. In this case the peripheral lens region could have a given focal length and the central lens region could possess a longer or shorter focal length, if the refractive index n cc of the core is smaller or larger than the refractive index n lu of the upper lens unit. Finally, trifocality of the lenses can be considered only as a theoretical option, but by no means an optically optimally functioning possibility.

© 2012 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(330.5370) Vision, color, and visual optics : Physiological optics

Original Manuscript: June 15, 2012
Manuscript Accepted: July 17, 2012
Published: August 29, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Ádám Egri and Gábor Horváth, "Possible optical functions of the central core in lenses of trilobite eyes: spherically corrected monofocality or bifocality," J. Opt. Soc. Am. A 29, 1965-1976 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. B. Whittington, Fossils Illustrated 2—Trilobites (Boydell, 1992).
  2. K. M. Towe, “Trilobite eyes: calcified lenses in vivo,” Science 179, 1007–1009 (1973). [CrossRef]
  3. E. N. K. Clarkson, “The visual system of trilobites,” Palaeontology 22, 1–22 (1979). [CrossRef]
  4. E. N. K. Clarkson, “The eye, morphology, function and evolution,” in Treatise on Invertebrate Paleontology, part O, Trilobita, Revised, R. L. Kaesler et al., eds. (University of Kansas, 1997), pp. 114–132.
  5. R. Levi-Setti, Trilobites, 2nd ed. (University of Chicago, 1993).
  6. A. T. Thomas, “Developmental palaeobiology of trilobite eyes and its evolutionary significance,” Earth Sci. Rev. 71, 77–93 (2005). [CrossRef]
  7. E. N. K. Clarkson, “The evolution of the eye in trilobites,” Fossils Strata 4, 7–31 (1975).
  8. R. Levi-Setti, E. N. K. Clarkson, and G. Horváth, “Paleontologia dell’occhio (Paleontology of the eye),” in Frontiere della Vita—Enciclopedia Italiana (Frontiers of Biology—Italian Encyclopedia). I. Origine ed evoluzione della vita. (Origin and Evolution of Life) 7. La construzione degli organismi (Construction of the Organism), D. Baltimore, R. Dulbecco, F. Jacob, and R. Levi-Montalcini, eds. (1998), pp. 365–379(in Italian). http://www.treccani.it
  9. R. Levi-Setti, E. N. K. Clarkson, and G. Horváth, “The eye: paleontology,” in Frontiers of Biology—Italian Encyclopedia. Part I. Origin and Evolution of Life. Section 7. Construction of the Organism, D. Baltimore, R. Dulbecco, F. Jacob, and R. Levi-Montalcini, eds. (2002), pp. 379–395.
  10. R. A. Fortey, “Pelagic trilobites as an example of deducing the life habits of extinct arthropods,” Trans. R. Soc. Edinburgh Earth Sci. 76, 219–230 (1985). [CrossRef]
  11. T. McCormick and R. A. Fortey, “Independent testing of a paleobiological hypothesis: the optical design of two pelagic trilobites reveals their relative palaeobathymetry,” Paleobiology 24, 235–253 (1998).
  12. J. Miller and E. N. K. Clarkson, “The post-ecdysial development of the cuticle and the eye of Phacops rana milleri,” Philos. Trans. R. Soc. Lond. Ser. B 288, 461–480 (1980). [CrossRef]
  13. E. N. K. Clarkson, “Fine structure of the eye in two species of Phacops (Trilobita),” Palaeontology 10, 603–616 (1967).
  14. G. Lindström, “Researches on the visual organs of the trilobites,” Kongliga Svenska Vertenskaps Akademiens Handlingar 8, 1–89 (1901).
  15. E. N. K. Clarkson and R. Levi-Setti, “Trilobite eyes and the optics of Des Cartes and Huygens,” Nature 254, 663–667 (1975). [CrossRef]
  16. G. Horváth, “Geometric optics of trilobite eyes: a theoretical study of the shape of aspherical interface in the cornea of schizochroal eyes of phacopid trilobites,” Math. Biosci. 96, 79–94 (1989). [CrossRef]
  17. G. Horváth and E. N. K. Clarkson, “Computational reconstruction of the probable change of form of the corneal lens and maturation of optics in the post-ecdysial development of the schizochroal eye of the Devonian trilobite Phacops rana milleri Stewart 1927,” J. Theor. Biol. 160, 343–373 (1993). [CrossRef]
  18. G. Horváth, “The lower lens unit in schizochroal trilobite eyes reduces reflectivity: on the possible optical function of the intralensar bowl,” Hist. Biol. 12, 83–92 (1996). [CrossRef]
  19. J. Gál, G. Horváth, E. N. K. Clarkson, and O. Haiman, “Image formation by bifocal lenses in a trilobite eye?” Vis. Res. 40, 843–853 (2000). [CrossRef]
  20. M. Lee, C. Torney, and A. W. Owen, “Magnesium-rich intralensar structures in schizohroal trilobite eyes,” Palaeontology 50, 1031–1038 (2007). [CrossRef]
  21. R. Feist, “The effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites,” in Evolutionary Change and Heterochrony, K. J. McNamara, ed. (Wiley, 1995), pp. 225–244.
  22. E. Clarkson, R. Levi-Setti, and G. Horváth, “The eyes of trilobites: the oldest preserved visual system,” Arthropod Struct. Dev. 35, 247–259 (2006). [CrossRef]
  23. G. Horváth, E. N. K. Clarkson, and W. Pix, “Survey of modern counterparts of schizochroal trilobite eyes: structural and functional similarities and differences,” Hist. Biol. 12, 229–263 (1997). [CrossRef]
  24. V. B. Meyer-Rochow, “Structure and function of the larval eye of the sawfly, Perga,” J. Insect Physiol. 20, 1565–1591 (1974). [CrossRef]
  25. E. Buschbeck, B. Ehmer, and R. Hoy, “Chunk versus point sampling: visual imaging in a small insect,” Science 286, 1178–1180 (1999). [CrossRef]
  26. D. Fordyce and T. W. Cronin, “Trilobite vision: a comparion of schizochroal and holochroal eyes with compound eyes of modern arthropods,” Paleobiology 19, 288–303 (1993).
  27. B. Schoenemann, “Trilobite eyes and a new type of neural superposition eye in an ancient system,” Palaeontographica A 281, 63–91 (2007).
  28. X. G. Zhang and E. N. K. Clarkson, “The eyes of Lower Cambrian eodiscid trilobites,” Palaeontology 33, 911–933 (1990).
  29. J. Gál, G. Horváth, and E. N. K. Clarkson, “Reconstruction of the shape and optics of the lenses in the abathochroal-eyed trilobite Neocobboldia chinlinica,” Hist. Biol. 14, 193–204 (2000). [CrossRef]
  30. Á. Egri, Á. Horváth, G. Kriska, and G. Horváth, “Optics of sunlit water drops on leaves: conditions under which sunburn is possible,” New Phytologist 185, 979–987 (2010). [CrossRef]
  31. E. N. K. Clarkson, R. Levi-Setti, and G. Horváth, “The eyes of trilobites: the oldest preserved visual system + Los ojos de los trilobites: el sistema visual más antiguo conservado (in Spanish),” Fundam. Appl. Nematol. 13, 1–70 (2008).
  32. M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002), p. 221.
  33. H. Hinton and G. Jarman, “Physiological colour change in the Hercules beetle,” Nature 238, 160–161 (1972). [CrossRef]
  34. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited