OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 3, Iss. 1 — Jan. 1, 1986
  • pp: 94–100

Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence

Kazuyoshi Itoh and Yoshihiro Ohtsuka  »View Author Affiliations


JOSA A, Vol. 3, Issue 1, pp. 94-100 (1986)
http://dx.doi.org/10.1364/JOSAA.3.000094


View Full Text Article

Enhanced HTML    Acrobat PDF (990 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is described for efficiently obtaining the comprehensive information of a polychromatic radiator. Under certain conditions both the spatial and spectral details of the radiative object can be recovered simultaneously from the three-dimensional spatial coherence function in the diffraction region. The recovery of object information is based on a Fourier-transform relationship derived from the basic formula [ WolfE. CarterW. H., J. Opt. Soc. Am. 68, 953– 964 ( 1978)] describing the field correlation function in terms of the source correlation function. A new type of interferometer is proposed for the efficient collection of the spatial coherence data. Experimental results of the spectral-image recovery are also presented.

© 1986 Optical Society of America

History
Original Manuscript: April 3, 1985
Manuscript Accepted: July 16, 1985
Published: January 1, 1986

Citation
Kazuyoshi Itoh and Yoshihiro Ohtsuka, "Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence," J. Opt. Soc. Am. A 3, 94-100 (1986)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-3-1-94


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970), Chap. 10.
  2. M. J. Beran, G. B. Parrent, Theory of Partial Coherence (Prentice-Hall, Englewood Cliffs, N.J., 1964), Chaps. 2 and 3.
  3. J. Perina, Coherence of Light (Van Nostrand-Reinhold, London, 1972), Chaps. 2 and 3.
  4. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chaps. 3 and 5.
  5. L. Mertz, Transformations in Optics (Wiley, New York, 1965), Chaps. 1 and 2.
  6. G. A. Vanasse, H. Sakai, “Fourier spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, New York, 1967), Vol. 6, pp. 261–327. [CrossRef]
  7. L. Mertz, Transformations in Optics (Wiley, New York, 1965), Chap. 4.
  8. T. D. Beard, “Imaging by correlation of intensity fluctuations,” Appl. Phys. Lett. 15, 227–229 (1969). [CrossRef]
  9. D. Kohler, L. Mandel, “Source reconstruction from the modulus of the correlation function: practical approach to the phase problem of optical coherence theory,”J. Opt. Soc. Am. 63, 126–134 (1973). [CrossRef]
  10. W. T. Rhodes, J. W. Goodman, “Interferometric technique for recording and restoring images degraded by unknown aberrations,”J. Opt. Soc. Am. 63, 647–656 (1973). [CrossRef]
  11. J. J. Burk, J. B. Breckinridge, “Passive imaging through the turbulent atomosphere: fundamental limit on the spatial frequency resolution of a rotational shearing interferometer,”J. Opt. Soc. Am. 68, 67–77 (1978). [CrossRef]
  12. A. H. Greenaway, J. C. Dainty, “On long-base line amplitude interferometers in astronomical applications,” Opt. Acta 25, 181–189 (1978). [CrossRef]
  13. C. Roddier, F. Roddier, “Imaging with a coherence interferometer in optical astronomy,” in Image Formation from Coherence Functions in Astronomy, C. van Schooneveld, ed. (Reidel, Dordrecht, The Netherlands, 1979), pp. 175–178. [CrossRef]
  14. K. Itoh, Y. Ohtsuka, “Interferometric image reconstruction through the turbulent atmosphere,” Appl. Opt. 20, 4239–4244 (1981). [CrossRef] [PubMed]
  15. See, for example, R. E. Loughhead, R. J. Bray, N. Brown, “Instrument profile of a triple Fabry–Perot interferometer for use in solar spectroscopy,” Appl. Opt. 17, 415–419 (1978). [CrossRef] [PubMed]
  16. See, for example, J. M. Hill, J. R. P. Angel, J. S. Scott, D. Lindley, P. Hintzen, “Multiple object spectroscopy: the Medusa spectrograph,” Astrophys. J. 242, L69–L72 (1980). [CrossRef]
  17. See, for example, J. B. Breckinridge, N. A. Page, R. R. Shannon, J. M. Rodgers, “Reflecting Schmidt imaging spectrometers,” Appl. Opt. 22, 1175–1180 (1983). [CrossRef] [PubMed]
  18. M. Harwit, N. J. A. Sloane, Hadamard Transform Optics (Academic, New York, 1979), Chaps. 3–5.
  19. H. Sakai, “Doubly multiplex Fourier spectroscopy,”J. Opt. Soc. Am. 73, 1947 (1983).
  20. G. Weigelt, “Speckle interferometry, speckle holography, speckle spectroscopy, and reconstruction of high-resolution images from space telescope,” in Proceedings, ESO Conference on Scientific Importance of High Angular Resolution at IR and Optical Wavelengths, M. H. Ulrich, K. Kjar, eds. (European Space Organization, Garching, 1981), pp. 95–113.
  21. E. Wolf, W. H. Carter, “Coherence and radiant intensity in scalar wave fields generated by fluctuating primary planar sources,”J. Opt. Soc. Am. 68, 953–964 (1978). [CrossRef]
  22. E. Wolf, A. J. Devaney, “On a relationship between spectral properties and spatial coherence properties of light,” Opt. Lett. 6, 168–170 (1981). [CrossRef] [PubMed]
  23. A. W. Lohmann, J. Ojeda-Castaneda, “Spatial periodicities in partially coherent fields,” Opt. Acta 30, 475–479 (1983). [CrossRef]
  24. E. Wolf, A. J. Devaney, F. Gori, “Relationship between spectral properties and spatial properties in one-dimensional free fields,” Opt. Commun. 46, 4–8 (1983). [CrossRef]
  25. G. Indebetouw, “Spatially periodic wave fields: an experimental demonstration of the relationship between the lateral and the longitudinal spatial frequencies,” Opt. Commun. 49, 86–90 (1984). [CrossRef]
  26. M. V. R. K. Murty, “Interference between wavefronts rotated or reversed with respect to each other and its relation to spatial coherence,”J. Opt. Soc. Am. 54, 1187–1190 (1964). [CrossRef]
  27. H. P. Baltes, H. A. Ferwerda, A. S. Glass, B. Steinle, “Retrieval of structural information from the far-zone intensity and coherence of scattered radiation,” Opt. Acta 28, 11–28 (1981). [CrossRef]
  28. H. P. Baltes, A. S. Glass, K. M. Jauch, “Multiplexing of coherence by beam-splitters,” Opt. Acta 28, 873–876 (1981). [CrossRef]
  29. H. P. Baltes, K. M. Jauch, “Multiplex version of the Van Cittert–Zernike theorem,”J. Opt. Soc. Am. 71, 1434–1439 (1981). [CrossRef]
  30. A. S. Glass, H. P. Baltes, “The significance of far-zone coherence for sources or scatters with hidden periodicity,” Opt. Acta 29, 169–185 (1982). [CrossRef]
  31. K. M. Jauch, H. P. Baltes, “Coherence of radiation scattered by grating covered by a diffuser,” Opt. Acta 28, 1013–1015 (1981). [CrossRef]
  32. K. M. Jauch, H. P. Baltes, “Reversing-wave-front interferometry of radiation from a diffusely illuminated phase grating,” Opt. Lett. 7, 127–129 (1982). [CrossRef] [PubMed]
  33. D. Newman, J. C. Dainty, “Detection of gratings hidden by diffusers using intensity interferometry,” J. Opt. Soc. Am. A 1, 403–411 (1984). [CrossRef]
  34. E. B. Fomalont, “Earth-rotation aperture synthesis,” Proc. IEEE 61, 1211–1218 (1973). [CrossRef]
  35. R. N. Bracewell, “Computer image processing,” Ann. Rev. Astron. Astrophys. 17, 113–134 (1979). [CrossRef]
  36. P. J. Napier, A. R. Thompson, R. D. Eckers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1320 (1983). [CrossRef]
  37. O. Bryngdahl, A. W. Lohmann, “Variable magnification in incoherent holography,” Appl. Opt. 9, 231–232 (1970). [CrossRef] [PubMed]
  38. J. C. Dainty, R. J. Scaddan, “A coherence interferometer for direct measurement of the atmospheric transfer function,” Mon. Not. R. Astron. Soc. 167, 69–73 (1974).
  39. J. B. Breckinridge, “Measurement of the amplitude of phase excursions in the earth’s atmosphere,”J. Opt. Soc. Am. 66, 143–144 (1976). [CrossRef]
  40. J. W. O’Byrne, School of Physics, University of Sydney, Sydney, Australia (personal communication).
  41. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 2.
  42. J. F. Walkup, J. W. Goodman, “Limitations of fringe parameter estimation at low light levels,”J. Opt. Soc. Am. 63, 399–407 (1973). [CrossRef]
  43. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), p. 125.
  44. A. D. Code, “Stellar energy distribution,” in Stellar Atmosphere, J. L. Greenstein, ed. (U. Chicago Press, Chicago, Ill., 1960). p. 85.
  45. J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 286–306.
  46. K. Itoh, Y. Ohtsuka, “Phase estimation based on the maximum likelihood criterion,” Appl. Opt. 22, 3054–3057 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited