OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 3, Iss. 7 — Jul. 1, 1986
  • pp: 988–1000

Higher-order statistical properties of speckle fields and their application to rough-surface interferometry

U. Vry and A. F. Fercher  »View Author Affiliations


JOSA A, Vol. 3, Issue 7, pp. 988-1000 (1986)
http://dx.doi.org/10.1364/JOSAA.3.000988


View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper is a study of the principles of a new method of rough-surface interferometry (ROSI). We review some properties of the higher-order probability density function (pdf) of correlated speckle fields and discuss some assumptions that are usually made silently. This pdf is used to investigate statistical properties of intensities and phases in a dichromatic speckle field; the results are applied to ROSI. The experiments described confirm the theoretical results.

© 1986 Optical Society of America

History
Original Manuscript: November 6, 1985
Manuscript Accepted: February 26, 1986
Published: July 1, 1986

Citation
U. Vry and A. F. Fercher, "Higher-order statistical properties of speckle fields and their application to rough-surface interferometry," J. Opt. Soc. Am. A 3, 988-1000 (1986)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-3-7-988


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).
  2. C. Wykes, “Decorrelation effects in speckle-pattern interferometry. I: Wavelength change dependent decorrelation with application to contouring and surface roughness measurement,” Opt. Acta 24, 517 (1977). [CrossRef]
  3. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1983), Chap. 5.
  4. A. F. Fercher, H. Z. Hu, U. Vry, “Rough surface interferometry with a two wavelength heterodyne speckle interferometer,” Appl. Opt. 24, 2181 (1985). [CrossRef]
  5. A. F. Fercher, H. Z. Hu, “Two-wavelength heterodyne interferometry,” in Optoelectronics in Engineering; Proceedings of the 6th International Congress Laser 83, W. Waidelich, ed. (Springer-Verlag, Berlin, 1984).
  6. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965).
  7. W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signals and Noise (University Microfilms, Ann Arbor, Mich., 1958).
  8. D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960).
  9. B. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978). [CrossRef]
  10. P. F. Steeger, “Probability density function of the intensity in partially polarized speckle fields,” Opt. Lett. 8, 523 (1983). [CrossRef]
  11. J. W. Goodman, “Statistical properties of laser speckle patterns,” Stanford Electronics Lab. Rep. TR2303-1, SEL-63-140 (Stanford University, Stanford, Calif., 1963).
  12. S. Donati, G. Martini, “Speckle-pattern intensity and phase: second-order conditional statistics,” J. Opt. Soc. Am. 69, 1690 (1979). [CrossRef]
  13. H. Fujii, W. Y. Lit, “Measurement of surface roughness using dichromatic speckle,” Opt. Commun. 22, 231 (1977). [CrossRef]
  14. M. Giglio, S. Musazzi, U. Perini, “Surface roughness measurements by means of speckle wavelength decorrelation,” Opt. Commun. 28, 166 (1979). [CrossRef]
  15. N. George, A. Jain, “Speckle in microscopy,” Opt. Commun. 6, 253 (1972). [CrossRef]
  16. N. George, A. Jain, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202 (1973). [CrossRef] [PubMed]
  17. N. George, A. Jain, “Space and wavelength dependence of speckle intensity,” Appl. Phys. 4, 201 (1974). [CrossRef]
  18. E. G. Rawson, J. W. Goodman, R. E. Norton, “Frequency dependence of modal noise in multimode optical fibers,” J. Opt. Soc. Am. 70, 968 (1980). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  20. R. Jones, C. Wykes, “The comparison of complex object geometries using a combination of electronic speckle pattern interferometric difference contouring and holographic illumination elements,” Opt. Acta 25, 449 (1978). [CrossRef]
  21. R. Crane, “Interferometric phase measurements,” Appl. Opt. 8, 538 (1969).
  22. M. Born, E. Wolf, Principles of Optics, 5th ed. (Oxford U. Press, Oxford, 1975), App. III.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited