OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 51–59

Robust spectral-domain optical coherence tomography speckle model and its cross-correlation coefficient analysis

Xuan Liu, Jessica C. Ramella-Roman, Yong Huang, Yuan Guo, and Jin U. Kang  »View Author Affiliations


JOSA A, Vol. 30, Issue 1, pp. 51-59 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000051


View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we propose a generic speckle simulation for optical coherence tomography (OCT) signal, by convolving the point-spread function (PSF) of the OCT system with the numerically synthesized random sample field. We validate our model and use the simulation method to study the statistical properties of cross-correlation coefficients between A-scans, which have been recently applied in transverse motion analysis by our group. The results of simulation show that oversampling is essential for accurate motion tracking; exponential decay of OCT signal leads to an underestimate of motion that can be corrected; lateral heterogeneity of sample leads to an overestimate of motion for a few pixels corresponding to the structural boundary.

© 2012 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: September 17, 2012
Revised Manuscript: November 23, 2012
Manuscript Accepted: November 28, 2012
Published: December 12, 2012

Citation
Xuan Liu, Jessica C. Ramella-Roman, Yong Huang, Yuan Guo, and Jin U. Kang, "Robust spectral-domain optical coherence tomography speckle model and its cross-correlation coefficient analysis," J. Opt. Soc. Am. A 30, 51-59 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-1-51


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Statistical Optics (Wiley, 1985).
  2. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  3. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef]
  4. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569 (2003). [CrossRef]
  5. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29, 2878–2880 (2004). [CrossRef]
  6. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A 22, 2366–2371 (2005). [CrossRef]
  7. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24, 1901–1910 (2007). [CrossRef]
  8. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15, 6200–6209 (2007). [CrossRef]
  9. B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett. 35, 2445–2447 (2010). [CrossRef]
  10. Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Opt. Express 18, 1024–1032 (2010). [CrossRef]
  11. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt. 8, 570–575 (2003). [CrossRef]
  12. D. K. Kasaragod, Z. Lu, L. E. Smith, and S. J. Matcher, “Speckle texture analysis of optical coherence tomography images,” Proc. SPIE 7387, 73871V (2010). [CrossRef]
  13. K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006). [CrossRef]
  14. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13, 5234–5239 (2005). [CrossRef]
  15. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33, 1530–1532 (2008). [CrossRef]
  16. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35, 1257–1259 (2010). [CrossRef]
  17. X. Liu, K. Zhang, Y. Huang, and J. U. Kang, “Spectroscopic-speckle variance OCT for microvasculature detection and analysis,” Biomed. Opt. Express 2, 2995–3009 (2011). [CrossRef]
  18. D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. C. Lee, T. Kiehl, B. C. Wilson, M. G. Fehlings, and V. X. D. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3, 911–919 (2012). [CrossRef]
  19. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3, 503–521 (2012). [CrossRef]
  20. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17, 8125–8136 (2009). [CrossRef]
  21. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20, 16567–16583(2012). [CrossRef]
  22. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000). [CrossRef]
  23. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593–596 (2005). [CrossRef]
  24. J. Meunier and M. Bertrand, “Ultrasonic texture motion analysis: theory and simulation,” IEEE Trans. Med. Imaging 14, 293–300 (1995). [CrossRef]
  25. S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, and M. T. Hinds, “Quantitative temporal speckle contrast imaging for tissue mechanics,” J. Opt. Soc. Am. A 24, 3728–3734 (2007). [CrossRef]
  26. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15 (2008). [CrossRef]
  27. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef]
  28. J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
  29. P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited