OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 71–81

Partial polarization theory of pulsed optical beams

Timo Voipio, Tero Setälä, and Ari T. Friberg  »View Author Affiliations


JOSA A, Vol. 30, Issue 1, pp. 71-81 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000071


View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a consistent matrix formalism for the characterization of partial polarization and coherence of random, nonstationary electromagnetic beams in time and frequency domains. We derive the temporal and spectral degrees of polarization and the Stokes parameters in terms of the time-domain and frequency-domain polarization matrices. The connections between temporal polarization and spectral coherence on the one hand and spectral polarization and temporal coherence on the other hand are discussed. Additionally, we establish equivalence theorems for fields with different temporal coherence properties to have the same spectral polarization states and for fields with different spectral coherence properties to possess identical temporal polarization. The theory is illustrated by analyzing specific examples of time-domain and frequency-domain electromagnetic Gaussian Schell-model pulsed beams.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: October 4, 2012
Manuscript Accepted: October 24, 2012
Published: December 13, 2012

Citation
Timo Voipio, Tero Setälä, and Ari T. Friberg, "Partial polarization theory of pulsed optical beams," J. Opt. Soc. Am. A 30, 71-81 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-1-71


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Statistical Optics (Wiley, 1985).
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  3. E. Collett, Polarized Light in Fiber Optics (SPIE, 2003).
  4. R. Martínez-Herrero, P. M. Mejías, and G. Piquero, Characterization of Partially Polarized Light Fields (Springer, 2009).
  5. E. Wolf, “Coherence properties of partially polarized electromagnetic radiation,” Nuovo Cimento 13, 1165–1181 (1959). [CrossRef]
  6. R. Barakat, “n-fold polarization measures and associated thermodynamic entropy of N partially coherent pencils of radiation,” Opt. Acta 30, 1171–1182 (1983). [CrossRef]
  7. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994). [CrossRef]
  8. G. P. Agrawal and E. Wolf, “Propagation-induced polarization changes in partially coherent optical beams,” J. Opt. Soc. Am. A 17, 2019–2023 (2000). [CrossRef]
  9. E. Wolf, “Polarization invariance in beam propagation,” Opt. Lett. 32, 3400–3401 (2007). [CrossRef]
  10. D. Zhao and E. Wolf, “Light beams whose degree of polarization does not change on propagation,” Opt. Commun. 281, 3067–3070 (2008). [CrossRef]
  11. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc.9, 399–416 (1852), reprinted in W. Swinell, ed., Polarized Light (Dowden, Hutchinson & Ross, 1975), pp. 124–141.
  12. E. Wolf, “Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?” Opt. Lett. 33, 642–644 (2008). [CrossRef]
  13. J. Tervo and J. Turunen, “Comment on ‘Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?’” Opt. Lett. 34, 1001 (2009). [CrossRef]
  14. E. Wolf, “Reply to Comment on ‘Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?’” Opt. Lett. 34, 1002 (2009). [CrossRef]
  15. F. Gori, J. Tervo, and J. Turunen, “Correlation matrices of completely unpolarized beams,” Opt. Lett. 34, 1447–1449 (2009). [CrossRef]
  16. T. Setälä, F. Nunziata, and A. T. Friberg, “Differences between partial polarizations in the space–time and space–frequency domains,” Opt. Lett. 34, 2924–2926 (2009). [CrossRef]
  17. M. Lahiri, “Polarization properties of stochastic light beams in the space–time and space–frequency domains,” Opt. Lett. 34, 2936–2938 (2009). [CrossRef]
  18. T. Setälä, F. Nunziata, and A. T. Friberg, “Partial polarization of optical beams: temporal and spectral descriptions,” in Information Optics and Photonics: Algorithms, Systems, and Applications, T. Fournel and B. Javidi, eds. (Springer, 2010), pp. 207–216.
  19. Ph. Refrégiér, T. Setälä, and A. T. Friberg, “Temporal and spectral degrees of polarization of light,” Proc. SPIE 8171, 817102 (2011). [CrossRef]
  20. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  21. T. Setälä, K. Lindfors, M. Kaivola, J. Tervo, and A. T. Friberg, “Intensity fluctuations and degree of polarization in three-dimensional thermal light fields,” Opt. Lett 29, 2587–2589 (2004). [CrossRef]
  22. G. S. Agarwal, “Utility of 3×3 polarization matrices for partially polarized transverse electromagnetic fields,” J. Mod. Opt. 52, 651–654 (2005). [CrossRef]
  23. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005). [CrossRef]
  24. A. Luis, “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005). [CrossRef]
  25. M. R. Dennis, “A three-dimensional degree of polarization based on Rayleigh scattering,” J. Opt. Soc. Am. A 24, 2065–2069(2007). [CrossRef]
  26. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [CrossRef]
  27. T. Setälä, K. Lindfors, and A. T. Friberg, “Degree of polarization in 3D optical fields generated from a partially polarized plane wave,” Opt. Lett. 34, 3394–3396 (2009). [CrossRef]
  28. J. J. Gil and I. San José, “3D polarimetric purity,” Opt. Commun. 283, 4430–4434 (2010). [CrossRef]
  29. C. J. R. Sheppard, “Partial polarization in three dimensions,” J. Opt. Soc. Am. A 28, 2655–2659 (2011). [CrossRef]
  30. In [20–29], several distinct approaches to introduce the three-dimensional (3D) degree of polarization have been presented. We note that, likewise, a number of mathematically and physically different definitions have been proposed in the literature for the degree of coherence of vectorial (electromagnetic, 2D or 3D) fields. Since this paper deals only with polarization, the degree of electromagnetic coherence plays no role in the analysis and is therefore not addressed. For a recent review on electromagnetic coherence see, e.g., [4].
  31. S. Pancharatnam, “Generalized theory of interference, and its applications. Part I. Coherent pencils,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
  32. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984).
  33. X.-F. Qian and J. H. Eberly, “Entanglement and classical polarization states,” Opt. Lett. 36, 4110–4112 (2011). [CrossRef]
  34. P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002). [CrossRef]
  35. H. Lajunen, J. Tervo, and P. Vahimaa, “Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses,” J. Opt. Soc. Am. A 21, 2117–2123 (2004). [CrossRef]
  36. H. Lajunen, P. Vahimaa, and J. Tervo, “Theory of spatially and spectrally partially coherent pulses,” J. Opt. Soc. Am. A 22, 1536–1545 (2005). [CrossRef]
  37. K. Saastamoinen, J. Turunen, P. Vahimaa, and A. T. Friberg, “Spectrally partially coherent propagation-invariant fields,” Phys. Rev. A 80, 053804 (2009). [CrossRef]
  38. W. Huang, S. A. Ponomarenko, M. Cada, and G. P. Agrawal, “Polarization changes of partially coherent pulses propagating in optical fibers,” J. Opt. Soc. Am. A 24, 3063–3068 (2007). [CrossRef]
  39. C. Ding, L. Pan, and B. Lü, “Changes in the spectral degree of polarization of stochastic spatially and spectrally partially coherent electromagnetic pulses in dispersive media,” J. Opt. Soc. Am. B 26, 1728–1735 (2009). [CrossRef]
  40. C. Ding, Z. Zhao, L. Pan, and B. Lü, “Generalized Stokes parameters of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams,” Opt. Commun. 283, 4470–4477 (2010). [CrossRef]
  41. M. Yao, Y. Cai, O. Korotkova, Q. Lin, and Z. Wang, “Spatio-temporal coupling of random electromagnetic pulses interacting with reflecting gratings,” Opt. Express 18, 22503–22514(2010). [CrossRef]
  42. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008). [CrossRef]
  43. A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009). [CrossRef]
  44. T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010). [CrossRef]
  45. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88, 097903 (2002). [CrossRef]
  46. Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  47. E. Collett and E. Wolf, “Is complete spatial coherence necessary for the generation of highly directional light beams?” Opt. Lett. 2, 27–29 (1978). [CrossRef]
  48. E. Collett and E. Wolf, “New equivalence theorems for planar sources that generate the same distributions of radiant intensity,” J. Opt. Soc. Am. 69, 942–950 (1979). [CrossRef]
  49. H. C. Kandpal and E. Wolf, “Partially coherent sources which generate far fields with the same spatial coherence properties,” Opt. Commun. 110, 255–258 (1994). [CrossRef]
  50. H. Roychowdhury and O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun. 249, 379–385 (2005). [CrossRef]
  51. K. Lindfors, A. Priimägi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1, 228–231 (2007).
  52. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  53. A. Luis, “Degree of polarization in quantum optics,” Phys. Rev. A 66, 013806 (2002). [CrossRef]
  54. Ł. Michalik and A. W. Domański, “Effective state of polarization of a photon-beam,” Photon. Lett. Poland 3, 41–43 (2011). [CrossRef]
  55. M. Lahiri and E. Wolf, “Quantum analysis of polarization properties of optical beams,” Phys. Rev. A 82, 043805 (2010). [CrossRef]
  56. E. Brainis, “Quantum imaging with N-photon states in position space,” Opt. Express 19, 24228–24240 (2011). [CrossRef]
  57. A. B. Klimov, G. Björk, J. Söderholm, L. S. Madsen, M. Lassen, U. L. Andersen, J. Heersink, R. Dong, Ch. Marquardt, G. Leuchs, and L. L. Sánchez-Soto, “Assessing the polarization of a quantum field from Stokes fluctuations,” Phys. Rev. Lett. 105, 153602 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited