OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 1980–1987

Phase diversity for three-dimensional imaging

Peter Kner  »View Author Affiliations


JOSA A, Vol. 30, Issue 10, pp. 1980-1987 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001980


View Full Text Article

Enhanced HTML    Acrobat PDF (1868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase diversity (PD) is a powerful technique for estimating wavefront aberrations from two-dimensional images of extended scenes. PD can work with extended incoherent images and, in an adaptive optics system, does not need extra hardware in addition to the deformable mirror. For these reasons, PD should be well suited to aberration measurement in microscopy applications. But, in biological widefield microscopy, the objects being imaged are frequently three-dimensional, and the images contain out-of-focus light. In this paper, we introduce multiplane PD and show that PD can be extended to widefield imaging of three-dimensional objects. This should be particularly useful in the field of biological fluorescence microscopy where the objects are very light sensitive and the aberrations cannot easily be determined.

© 2013 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(100.6890) Image processing : Three-dimensional image processing
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: June 12, 2013
Revised Manuscript: August 5, 2013
Manuscript Accepted: August 18, 2013
Published: September 12, 2013

Citation
Peter Kner, "Phase diversity for three-dimensional imaging," J. Opt. Soc. Am. A 30, 1980-1987 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-10-1980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Series in Optical and Imaging Sciences; 16 (Oxford University, 1998).
  2. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1997).
  3. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [CrossRef]
  4. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007).
  5. J. A. Kubby, Adaptive Optics for Biological Imaging (CRC press, 2013).
  6. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011). [CrossRef]
  7. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36, 3389–3391 (2011). [CrossRef]
  8. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36–44 (2005). [CrossRef]
  9. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000). [CrossRef]
  10. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731–736 (2008). [CrossRef]
  11. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006). [CrossRef]
  12. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32, 5–7 (2007). [CrossRef]
  13. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  14. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [CrossRef]
  15. J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble space telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1767 (1993). [CrossRef]
  16. B. M. Hanser, M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett. 28, 801–803 (2003). [CrossRef]
  17. P. Kner, L. Winoto, D. A. Agard, and J. W. Sedat, “Closed loop adaptive optics for microscopy without a wavefront sensor,” Proc. SPIE 7570, 757006 (2010). [CrossRef]
  18. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982). [CrossRef]
  19. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  20. E. F. Hom, F. Marchis, T. K. Lee, S. Haase, D. A. Agard, and J. W. Sedat, “AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data,” J. Opt. Soc. Am. A 24, 1580–1600 (2007). [CrossRef]
  21. G. Chenegros, L. M. Mugnier, F. Lacombe, and M. Glanc, “3D phase diversity: a myopic deconvolution method for short-exposure images: application to retinal imaging,” J. Opt. Soc. Am. A 24, 1349–1357 (2007). [CrossRef]
  22. H. I. Campbell, S. Zhang, A. H. Greenaway, and S. Restaino, “Generalized phase diversity for wave-front sensing,” Opt. Lett. 29, 2707–2709 (2004). [CrossRef]
  23. Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226, 33–42 (2007). [CrossRef]
  24. P. A. Stokseth, “Properties of a defocused optical system,” J. Opt. Soc. Am. 59, 1314–1321 (1969). [CrossRef]
  25. A. J. E. M. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited