OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2021–2028

Evaporating droplet hologram simulation for digital in-line holography setup with divergent beam

Loïc Méès, Nathalie Grosjean, Delphine Chareyron, Jean-Louis Marié, Mozhdeh Seifi, and Corinne Fournier  »View Author Affiliations


JOSA A, Vol. 30, Issue 10, pp. 2021-2028 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002021


View Full Text Article

Enhanced HTML    Acrobat PDF (1241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Generalized Lorenz–Mie theory (GLMT) for a multilayered sphere is used to simulate holograms produced by evaporating spherical droplets with refractive index gradient in the surrounding air/vapor mixture. Simulated holograms provide a physical interpretation of experimental holograms produced by evaporating Diethyl Ether droplets with diameter in the order of 50 μm and recorded in a digital in-line holography configuration with a divergent beam. Refractive index gradients in the surrounding medium lead to a modification of the center part of the droplet holograms, where the first fringe is unusually bright. GLMT simulations reproduce this modification well, assuming an exponential decay of the refractive index from the droplet surface to infinity. The diverging beam effect is also considered. In both evaporating and nonevaporating cases, an equivalence is found between Gaussian beam and plane wave illuminations, simply based on a magnification ratio to be applied to the droplets’ parameters.

© 2013 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(290.4020) Scattering : Mie theory
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: July 10, 2013
Manuscript Accepted: July 30, 2013
Published: September 18, 2013

Citation
Loïc Méès, Nathalie Grosjean, Delphine Chareyron, Jean-Louis Marié, Mozhdeh Seifi, and Corinne Fournier, "Evaporating droplet hologram simulation for digital in-line holography setup with divergent beam," J. Opt. Soc. Am. A 30, 2021-2028 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-10-2021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Guella, S. Alexandrova, and A. Saboni, “Evaporation of a free falling droplet,” Int. J. Therm. Sci. 47, 886–898 (2008). [CrossRef]
  2. J. S. Wu, Y. J. Liu, and H. J. Sheen, “Effect of ambient turbulence and fuel properties on the evaporation rate of single droplets,” Int. J. Heat Mass Transfer 44, 4593–4603 (2001). [CrossRef]
  3. C. Maqua, G. Castanet, F. Grisch, F. Lemoine, T. Kristyadi, and S. Sazhin, “Monodisperse droplet heating and evaporation: experimental study and modelling,” Int. J. Heat Mass Transfer 51, 3932–3945 (2008). [CrossRef]
  4. F. Soulez, L. Denis, C. Fournier, E. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. 24, 1164–1171 (2007). [CrossRef]
  5. F. Soulez, L. Denis, C. Fournier, E. Thiébaut, and C. Goepfert, “Inverse problem approach in particle digital holography: Out-of-field particle detection made possible,” J. Opt. Soc. Am. 24, 3708–3716 (2007). [CrossRef]
  6. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef]
  7. D. Chareyron, J. L. Marié, C. Fournier, G. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography “inverse method” for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012). [CrossRef]
  8. L. Lorenz, “Lysbevaegelsen i og uden for en af plane Lysbølger belyst Kulge,” Vidensk. Selk. Skr. 6, 1–62 (1890).
  9. G. Mie, “Beiträge zur Optik Trüber Medien speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  10. P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 335, 57–136 (1909). [CrossRef]
  11. G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomiz. Spr. 10, 277–333 (2000).
  12. G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).
  13. F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef]
  14. G. Gouesbet, B. Maheu, and G. Gréhan, “The order of approximation in a theory of the scattering of a Gaussian beam by a Mie scatter center,” J. Opt. 16, 239–247 (1985). [CrossRef]
  15. B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988). [CrossRef]
  16. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  17. C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik 78, 80–86 (1988).
  18. D. Lebrun, D. Allano, L. Méès, F. Walle, R. Boucheron, F. Corbin, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011). [CrossRef]
  19. S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakon, Y. Biscos, N. Garcia, G. Lavergne, L. Méès, G. Gouesbet, and G. Gréhan, “Rainbow refractometry on particles with radial refractive index gradients,” Exp. Fluids 43, 595–601 (2007). [CrossRef]
  20. G. R. Toker and J. Stricker, “Holographic study of suspended vaporizing volatile liquid droplets in still air,” Int. J. Heat Mass Transfer 39, 3475–3482 (1996). [CrossRef]
  21. G. R. Toker and J. Stricker, “Study of suspended vaporizing volatile liquid droplets by an enhanced sensitivity holographic technique: additional results,” Int. J. Heat Mass Transfer. 41, 2553–2555 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited