OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2034–2047

Semi-analytic impedance modeling of three-dimensional photonic and metamaterial structures

Kokou B. Dossou, Lindsay C. Botten, and Christopher G. Poulton  »View Author Affiliations

JOSA A, Vol. 30, Issue 10, pp. 2034-2047 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We define the concept of an impedance matrix for three-dimensional (3D) photonic and metamaterial structures relative to a reference medium and show that it satisfies a matrix generalization of the basic algebraic properties of the wave impedance between homogeneous media. This definition of the impedance matrix is motivated by the structure of the Fresnel reflection and transmission matrices at the interface between the media. In the derivation of the Fresnel scattering matrices, the field in each medium is expressed by a Bloch mode expansion, with field matching at the interface being undertaken in a least-squares manner by exploiting a biorthogonality relation between primal and adjoint Bloch modes. A semi-analytic technique, based on the impedance matrix, is developed for modeling the scattering of light by 3D periodic photonic and metamaterial structures. The advantages (in design and intuition) of the formalism are demonstrated through two applications.

© 2013 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(290.0290) Scattering : Scattering
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: June 25, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: August 19, 2013
Published: September 19, 2013

Kokou B. Dossou, Lindsay C. Botten, and Christopher G. Poulton, "Semi-analytic impedance modeling of three-dimensional photonic and metamaterial structures," J. Opt. Soc. Am. A 30, 2034-2047 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  2. X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24, 866–881 (2007). [CrossRef]
  3. K. B. Dossou and L. C. Botten, “A combined three-dimensional finite element and scattering matrix method for the analysis of plane wave diffraction by bi-periodic, multilayered structures,” J. Comput. Phys. 231, 6969–6989 (2012). [CrossRef]
  4. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  5. K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012). [CrossRef]
  6. L. M. Brekhovskikh, Waves in Layered Media (Academic, 1960).
  7. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).
  8. F. J. Lawrence, C. Martijn de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photon. (to be published).
  9. S. Boscolo, C. Conti, M. Midrio, and C. Someda, “Numerical analysis of propagation and impedance matching in 2d photonic crystal waveguides with finite length,” J. Lightwave Technol. 20, 304–310 (2002). [CrossRef]
  10. J. Ushida, M. Tokushima, M. Shirane, A. Gomyo, and H. Yamada, “Immittance matching for multidimensional open-system photonic crystals,” Phys. Rev. B 68, 155115 (2003). [CrossRef]
  11. R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004). [CrossRef]
  12. B. Momeni, A. A. Eftekhar, and A. Adibi, “Effective impedance model for analysis of reflection at the interfaces of photonic crystals,” Opt. Lett. 32, 778–780 (2007). [CrossRef]
  13. B. Momeni, M. Badieirostami, and A. Adibi, “Accurate and efficient techniques for the analysis of reflection at the interfaces of three-dimensional photonic crystals,” J. Opt. Soc. Am. B 24, 2957–2963 (2007). [CrossRef]
  14. A. Andryieuski, S. Ha, A. A. Sukhorukov, Y. S. Kivshar, and A. V. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012).
  15. M. Mazilu and K. Dholakia, “Optical impedance of metallic nano-structures,” Opt. Express 14, 7709–7722 (2006). [CrossRef]
  16. J. Yang, C. Sauvan, T. Paul, C. Rockstuhl, F. Lederer, and P. Lalanne, “Retrieving the effective parameters of metamaterials from the single interface scattering problem,” Appl. Phys. Lett. 97, 061102 (2010). [CrossRef]
  17. F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008). [CrossRef]
  18. F. J. Lawrence, L. C. Botten, K. B. Dossou, C. Martijn de Sterke, and R. C. McPhedran, “Impedance of square and triangular lattice photonic crystals,” Phys. Rev. A 80, 023826 (2009). [CrossRef]
  19. A. K. Cousins and S. C. Gottschalk, “Application of the impedance formalism to diffraction gratings with multiple coating layers,” Appl. Opt. 29, 4268–4271 (1990). [CrossRef]
  20. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  21. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  22. L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001). [CrossRef]
  23. Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  24. K. Dossou, M. A. Byrne, and L. C. Botten, “Finite element computation of grating scattering matrices and application to photonic crystal band calculations,” J. Comput. Phys. 219, 120–143 (2006). [CrossRef]
  25. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  26. W. T. Perrins and R. C. McPhedran, “Metamaterials and the homogenization of composite materials,” Metamaterials 4, 24–31 (2010). [CrossRef]
  27. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef]
  28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  29. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009). [CrossRef]
  30. K. Dossou and M. Fontaine, “A high order isoparametric finite element method for the computation of waveguide modes,” Comput. Methods Appl. Mech. Eng. 194, 837–858 (2005). [CrossRef]
  31. R. Petit, ed., Electromagnetic Theory of Gratings, vol. 22 of Topics in Current Physics (Springer-Verlag, 1980).
  32. L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004). [CrossRef]
  33. L. C. Botten, N.-A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part II. Properties and implementation,” J. Opt. Soc. Am. A 17, 2177–2190 (2000). [CrossRef]
  34. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981). [CrossRef]
  35. L. C. Botten and R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479–1488 (1985). [CrossRef]
  36. T. Paul, C. Menzel, W. Śmigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B 84, 115142 (2011). [CrossRef]
  37. T. P. White, L. C. Botten, C. M. de Sterke, R. C. McPhedran, A. A. Asatryan, and T. N. Langtry, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. II. Applications,” Phys. Rev. E 70, 056607 (2004). [CrossRef]
  38. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005). [CrossRef]
  39. P. Kužel and J. Petzelt, “Time-resolved terahertz transmission spectroscopy of dielectrics,” Ferroelectrics 239, 79–86 (2000). [CrossRef]
  40. D. Chemicals, “ http://www.dow.com/cyclotene/solution/highfreq.htm ”.
  41. H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 749–763.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited