OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2066–2078

Visual adaptation—a reinterpretation: discussion

Donald Laming  »View Author Affiliations

JOSA A, Vol. 30, Issue 10, pp. 2066-2078 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This discussion paper seeks to reshape the contemporary understanding of visual adaptation. Received wisdom says that input luminance is scaled down in the retina. There is, first, a near-logarithmic compression described by the Naka–Rushton equation and, second, a control of gain (better attenuation) by feedback from the output of each ganglion cell that is equivalent to modifying the half-saturation constant in the Naka–Rushton equation. The reinterpretation proposed here asserts the following instead: (a) the scaling down in the retina is accomplished by receptive fields of different areas, which function over different ranges of luminance, ranges inversely proportional to the area of the receptive field. (b) The visual pathway is differentially coupled to the physical stimulus, so that the maintained discharge increases only as the square root of the luminance. (c) The Naka–Rushton equation describes merely the saturation of neural response as input increases; when a neuron is overloaded, output tends to regularity and onward transmission is blocked by a subsequent stage of differential coupling. Three existing studies of the relation between input to and output from retinal ganglion cells are reinterpreted in the light of this alternative view of visual adaptation.

© 2013 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: April 23, 2013
Revised Manuscript: August 13, 2013
Manuscript Accepted: August 25, 2013
Published: September 23, 2013

Donald Laming, "Visual adaptation—a reinterpretation: discussion," J. Opt. Soc. Am. A 30, 2066-2078 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Riggs, “Light as a stimulus for vision,” in Vision and Visual Perception, C. H. Graham, ed. (Wiley, 1965), pp. 1–38.
  2. R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–346 (1984). [CrossRef]
  3. W. S. Geisler, “The effects of photopigment depletion on brightness and threshold,” Vis. Res. 18, 269–278 (1978). [CrossRef]
  4. W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vis. Res. 18, 279–289 (1978). [CrossRef]
  5. W. S. Geisler, “Evidence for the equivalent-background hypothesis in cones,” Vis. Res. 19, 799–805 (1979). [CrossRef]
  6. D. C. Hood, “Psychophysical and physiological tests of physiological explanations of light adaptation,” in Visual Psychophysics: Its Physiological Basis, J. Armington, J. Krauskopf, and B. Wooten, eds. (Academic, 1978), pp. 141–155.
  7. M. E. Rudd and L. G. Brown, “A model of Weber and noise gain control in the retina of the toad Bufo marinus,” Vis. Res. 37, 2433–2453 (1997). [CrossRef]
  8. D. L. Beaudoin, B. G. Borghuis, and J. B. Demb, “Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells,” J. Neurosci. 27, 2636–2645 (2007). [CrossRef]
  9. D. L. Beaudoin, M. B. Manookin, and J. B. Demb, “Distinct expression of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell,” J. Physiol. 586, 5487–5502 (2008). [CrossRef]
  10. V. Bonin, V. Mante, and M. Carandini, “The statistical computation underlying contrast gain control,” J. Neurosci. 26, 6346–6353 (2006). [CrossRef]
  11. B. Scholl, K. W. Latimer, and N. J. Priebe, “A retinal source of spatial contrast gain control,” J. Neurosci. 32, 9824–9830 (2012). [CrossRef]
  12. D. Laming, Sensory Analysis (Academic, 1986).
  13. D. Laming, “Contrast sensitivity,” in Vision and Visual Dysfunction, J. J. Kulikowski, V. Walsh, and I. J. Murray, eds., Vol. 5 of Limits of Visual Perception (Macmillan, 1991), pp. 38–39.
  14. D. Laming, “Spatial frequency channels,” in Vision and Visual Dysfunction, J. J. Kulikowski, V. Walsh, and I. J. Murray, eds., Vol. 5 of Limits of Visual Perception (Macmillan, 1991), pp. 97–105.
  15. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
  16. J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vis. Res. 14, 1039–1042 (1974). [CrossRef]
  17. D. Laming, “Probability summation—a critique,” J. Opt. Soc. Am. A 30, 300–315 (2013). [CrossRef]
  18. G. W. Hughes and L. Maffei, “Retinal ganglion cell response to sinusoidal light stimulation,” J. Neurophysiol. 29, 333–352 (1966).
  19. D. Laming, “Fechner’s law: where does the log transform come from?” Seeing Perceiving 23, 155–171 (2010).
  20. W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, 1958), Chaps. 8 and 9.
  21. J. Cafaro and F. Rieke, “Noise correlations improve response fidelity and stimulus encoding,” Nature 468, 964–967 (2010). [CrossRef]
  22. R. W. Rodieck and J. Stone, “Analysis of receptive fields of cat retinal ganglion cells,” J. Neurophysiol. 28, 833–849 (1965).
  23. B. Sakmann and O. D. Creutzfeldt, “Scotopic and mesopic light adaptation in the cat’s retina,” Pflugers Archiv 313, 168–185 (1969).
  24. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 157, 517–552 (1966).
  25. C. Enroth-Cugell and R. M. Shapley, “Flux, not retinal illumination, is what cat retinal ganglion cells really care about,” J. Physiol. 233, 311–326 (1973).
  26. R. A. Linsenmeier, L. J. Frishman, H. G. Jakiela, and C. Enroth-Cugell, “Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements,” Vis. Res. 22, 1173–1183 (1982). [CrossRef]
  27. E. S. Yamada, L. C. L. Silveira, V. H. Perry, and E. C. S. Franco, “M and P retinal ganglion cells of the owl monkey: morphology, size and photoreceptor convergence,” Vis. Res. 41, 119–131 (2001), Fig. 6, p. 126. [CrossRef]
  28. D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
  29. F. L. van Nes, “Experimental studies in spatiotemporal contrast transfer by the human eye,” Doctoral thesis (Utrecht University, 1968).
  30. D. Laming, “Statistical information and uncertainty: a critique of applications in experimental psychology,” Entropy 12, 720–771 (2010). [CrossRef]
  31. F. W. Campbell and D. G. Green, “Monocular versus binocular visual acuity,” Nature 208, 191–192 (1965). [CrossRef]
  32. G. E. Legge, “Spatial frequency masking in human vision: Binocular interactions,” J. Opt. Soc. Am. 69, 838–847 (1979). [CrossRef]
  33. Even more compelling is that we can perceive counterphase flicker—courtesy of the nonlinearity specific to each eye [34,35].
  34. C. R. Cavonius, “Binocular interactions in flicker,” Quart. J. Exp. Psychol. 31, 273–280 (1979). [CrossRef]
  35. C. R. Cavonius, O. Estévez, and L. H. van der Tweel, “Counterphase dichoptic flicker is seen as its own second harmonic,” Ophthalmic Physiolog. Opt. 12, 153–156 (1992). [CrossRef]
  36. D. H. Hubel and T. N. Wiesel, “Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. Lond. Ser. B 198, 1–59 (1977). [CrossRef]
  37. H. B. Barlow and W. R. Levick, “Threshold setting by the surround of cat retinal ganglion cells,” J. Physiol. 259, 737–757 (1976).
  38. H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, “Change of organization in the receptive fields of the cat’s retina during dark adaptation,” J. Physiol. 137, 338–354 (1957).
  39. H. B. Barlow and W. R. Levick, “Changes in the maintained discharge with adaptation level in the cat retina,” J. Physiol. 202, 699–718 (1969).
  40. A. Reeves, S. Wu, and T. J. Schirillo, “The effect of photon noise on the detection of white flashes,” Vis. Res. 38, 691–703 (1998). [CrossRef]
  41. T. D. Lamb, “The involvement of rod photoreceptors in dark adaptation,” Vis. Res. 21, 1773–1782 (1981). [CrossRef]
  42. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
  43. K.-I. Naka and W. A. H. Rushton, “S-potentials from luminosity units in the retina of fish (Cyprinidae),” J. Physiol. 185, 587–599 (1966).
  44. R. W. Rodieck, “Maintained activity of cat retinal ganglion cells,” J. Neurophysiol. 30, 1043–1070 (1967), Fig. 4, p. 1050.
  45. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948). [CrossRef]
  46. W. A. H. Rushton, “The Ferrier lecture, 1962. Visual adaptation,” Proc. R. Soc. Lond. B 162, 20–46 (1965). [CrossRef]
  47. W. A. H. Rushton, “Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision,” J. Physiol. 156, 193–205 (1961).
  48. B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. B 134, 283–302 (1947). [CrossRef]
  49. S. M. Dawis and R. L. Purple, “Adaptation in cones: a general model,” Biophys. J. 39, 151–155 (1982). [CrossRef]
  50. M. J. Valeton and D. van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vis. Res. 231539–1547 (1983). [CrossRef]
  51. G. Ryle, The Concept of Mind (Hutchinson, 1949).
  52. T. N. Cornsweet, Visual Perception (Academic, 1970).
  53. D. Laming, Human Judgment: The Eye of the Beholder (Thomson Learning, 2004).
  54. E. G. Heinemann, “Simultaneous brightness induction as a function of inducing- and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955). [CrossRef]
  55. E. G. Heinemann, “The relation of apparent brightness to the threshold for differences in luminance,” J. Exp. Psychol. 61, 389–399 (1961). [CrossRef]
  56. D. Laming, The Measurement of Sensation (Oxford, 1997), Chap. 6, pp. 83–86 and Chap. 7, 104–105.
  57. H. B. Barlow, W. R. Levick, and M. Yoon, “Responses to single quanta of light in retinal ganglion cells of the cat,” Vis. Res. 11, 87–101 (1971). [CrossRef]
  58. But note that ν is assumed to be fixed. If the number ν is variable, the argument collapses.
  59. S. W. Kuffler, R. Fitzhugh, and H. B. Barlow, “Maintained activity in the cat’s retina in light and darkness,” J. Gen. Physiol. 40, 683–702 (1957). [CrossRef]
  60. R. F. Hess and K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. 371, 365–385 (1986).
  61. R. F. Hess and K. Nordby, “Spatial and temporal properties of human rod vision in the achromat,” J. Physiol. 371, 387–406 (1986).
  62. Shorter Oxford English Dictionary, 3rd ed. (Oxford, 1944), p. 1007.
  63. C. Enroth-Cugell and P. Lennie, “The control of retinal ganglion cell discharge by receptive field surrounds,” J. Physiol. 247, 551–578 (1975).
  64. C. Enroth-Cugell and L. H. Pinto, “Properties of the surround response mechanism of cat retinal ganglion cells and centre-surround interaction,” J. Physiol. 220, 403–439 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited