OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2124–2132

Optically amplified detection for biomedical sensing and imaging

Ata Mahjoubfar, Keisuke Goda, Gary Betts, and Bahram Jalali  »View Author Affiliations


JOSA A, Vol. 30, Issue 10, pp. 2124-2132 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002124


View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical sensing and imaging methods for biomedical applications, such as spectroscopy and laser-scanning fluorescence microscopy, are incapable of performing sensitive detection at high scan rates due to the fundamental trade-off between sensitivity and speed. This is because fewer photons are detected during short integration times and hence the signal falls below the detector noise. Optical postamplification can, however, overcome this challenge by amplifying the collected optical signal after collection and before photodetection. Here we present a theoretical analysis of the sensitivity of high-speed biomedical sensing and imaging systems enhanced by optical postamplifiers. As a case study, we focus on Raman amplifiers because they produce gain at any wavelength within the gain medium’s transparency window and are hence suitable for biomedical applications. Our analytical model shows that when limited by detector noise, such optically postamplified systems can achieve a sensitivity improvement of up to 20 dB in the visible to near-infrared spectral range without sacrificing speed. This analysis is expected to be valuable for design of fast real-time biomedical sensing and imaging systems.

© 2013 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(170.0180) Medical optics and biotechnology : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 28, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 24, 2013
Published: September 26, 2013

Citation
Ata Mahjoubfar, Keisuke Goda, Gary Betts, and Bahram Jalali, "Optically amplified detection for biomedical sensing and imaging," J. Opt. Soc. Am. A 30, 2124-2132 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-10-2124


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005). [CrossRef]
  2. P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009). [CrossRef]
  3. S. G. Slade, R. N. Baker, and D. K. Brockman, The Complete Book of Laser Eye Surgery (Sourcebooks, 2002).
  4. M. Delius, “Twenty years of shock wave research at the institute for surgical research,” Eur. Surg. Res. 34, 30–36 (2002). [CrossRef]
  5. R. A. Riehle, Principles of Extracorporeal Shock Wave Lithotripsy (Churchill Livingston, 1987).
  6. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009). [CrossRef]
  7. T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005). [CrossRef]
  8. J. V. Watson, Introduction to Flow Cytometry (Cambridge University, 2004).
  9. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15, 11385–11395 (2007). [CrossRef]
  10. I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University, 1998).
  11. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006). [CrossRef]
  12. H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley, 2002).
  13. A. Diaspro, Confocal and Two-Photon Microscopy (Wiley, 2001).
  14. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008). [CrossRef]
  15. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011). [CrossRef]
  16. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009). [CrossRef]
  17. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010). [CrossRef]
  18. F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009). [CrossRef]
  19. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003). [CrossRef]
  20. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013). [CrossRef]
  21. P. Horowitz and W. Hill, The Art of Electronics (Cambridge University, 1989).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).
  23. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002). [CrossRef]
  24. K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95, 251101 (2009). [CrossRef]
  25. A. Mahjoubfar, K. Goda, and B. Jalali, “Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA4.
  26. D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27, 1031–1033 (2002). [CrossRef]
  27. S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991). [CrossRef]
  28. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012). [CrossRef]
  29. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013). [CrossRef]
  30. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80, 4269–4283 (2008). [CrossRef]
  31. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006). [CrossRef]
  32. M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236–242 (2003). [CrossRef]
  33. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  34. C. H. Kim, J. Bromage, and R. M. Jopson, “Reflection-induced penalty in Raman amplified systems,” IEEE Photon. Technol. Lett. 14, 573–575 (2002). [CrossRef]
  35. M. N. Islam, Raman Amplifiers for Telecommunications (Springer, 2004).
  36. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12, 528–530 (2000). [CrossRef]
  37. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998). [CrossRef]
  38. M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999). [CrossRef]
  39. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).
  40. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” J. Lightwave Technol. 19, 1140–1148 (2001). [CrossRef]
  41. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  42. H. Kogelnik and A. Yariv, “Considerations of noise and schemes for its reduction in laser amplifiers,” in Proceedings of IEEE Conference on Electron Device Research (IEEE, 1964), pp. 165–172.
  43. K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, “Scaling of the Raman gain coefficient: applications to Germanosilicate fibers,” J. Lightwave Technol. 21, 1652–1662 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited