OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2205–2215

Laser optical feedback imaging controlled by an electronic feedback loop

Pierre Guillemé, Eric Lacot, Olivier Jacquin, Wilfried Glastre, Olivier Hugon, and Hugues Guillet de Chatellus  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2205-2215 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002205


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In autodyne interferometry, the beating between the reference beam and the signal beam takes place inside the laser cavity and therefore the laser fulfills simultaneously the roles of emitter and detector of photons. In these conditions, the laser relaxation oscillations play a leading role, both in the laser quantum noise, which determines the signal-to-noise ratio (SNR), and also in the laser dynamics, which determines the response time of the interferometer. In the present study, we have experimentally analyzed the SNR and the response time of a laser optical feedback imaging (LOFI) interferometer based on a Nd3+ microchip laser, with a relaxation frequency in the megahertz range. More precisely, we have compared the image quality obtained when the laser dynamics is free and when it is controlled by a stabilizing electronic feedback loop using a differentiator. From this study, we can conclude that when the laser time response is shorter (i.e., the LOFI gain is lower), the image quality can be better (i.e., the LOFI SNR can be higher) and that the use of an adapted electronic feedback loop allows high-speed LOFI with a shot-noise limited sensitivity. Despite the critical stability of the electronic feedback loop, the obtained experimental results are in good agreement with the theoretical predictions.

© 2013 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: May 14, 2013
Revised Manuscript: August 27, 2013
Manuscript Accepted: August 30, 2013
Published: October 4, 2013

Citation
Pierre Guillemé, Eric Lacot, Olivier Jacquin, Wilfried Glastre, Olivier Hugon, and Hugues Guillet de Chatellus, "Laser optical feedback imaging controlled by an electronic feedback loop," J. Opt. Soc. Am. A 30, 2205-2215 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yoshizawa, ed., Handbook of Optical Metrology: Principles and Applications (CRC Press, 2009).
  2. K. Otsuka, “Effects of external perturbations on LiNdP4012 Lasers,” IEEE J. Quantum Electron. QE-15, 655–663 (1979). [CrossRef]
  3. K. Otsuka, “Self-mixing thin-slice solids-state laser metrology,” Sensors 11, 2195–2245 (2011). [CrossRef]
  4. K. Otsuka, “Highly sensitive measurement of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys. 31, L1546–L1548 (1992). [CrossRef]
  5. S. Okamoto, H. Takeda, and F. Kannari, “Ultrahighly sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser,” Rev. Sci. Instrum. 66, 3116–3120 (1995). [CrossRef]
  6. R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706–708 (1999). [CrossRef]
  7. S. Suddo, T. Ohtomo, Y. Takahascvhi, T. Oishi, and K. Otsuka, “Determination of velocity of self-mobile phytoplankton using a self thin-slice solid–state laser,” Appl. Opt. 48, 4049–4055 (2009). [CrossRef]
  8. K. Otsuka, K. Abe, J. Y. Ko, and T. S. Lim, “Real-time nanometer vibration measurement with self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339–1341 (2002). [CrossRef]
  9. V. Muzet, E. Lacot, O. Hugon, and Y. Gaillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793–799 (2005). [CrossRef]
  10. E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824 (2004). [CrossRef]
  11. H. Gilles, S. Girard, M. Laroche, and A. Belarouci, “Near-field amplitude and phase measurements using heterodyne optical feedback on solid-state lasers,” Opt. Lett. 33, 1–3 (2008). [CrossRef]
  12. S. Blaize, B. Bérenguier, I. Stéfanon, A. Bruyant, G. Lerondel, P. Royer, O. Hugon, O. Jacquin, and E. Lacot, “Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry,” Opt. Express 16, 11718–11726 (2008). [CrossRef]
  13. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999). [CrossRef]
  14. A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Synthetic aperture laser optical feedback imaging using galvanometric scanning,” Opt. Lett. 31, 3031–3033 (2006). [CrossRef]
  15. O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008). [CrossRef]
  16. O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. Guillet de Chatellus, “Coherent microscopy by laser optical feedback imaging (LOFI) technique,” Ultramicroscopy 111, 1557–1563 (2011). doi: 10.1016/j.ultramic.2011.08.004. [CrossRef]
  17. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815 (2001). [CrossRef]
  18. E. Lacot, O. Jacquin, G. Roussely, O. Hugon, and H. Guillet de Chatellus, “Comparative study of autodyne and heterodyne laser interferometry for imaging,” J. Opt. Soc. Am. A 27, 2450–2458 (2010). [CrossRef]
  19. O. Jacquin, E. Lacot, W. Glastre, O. Hugon, and H. Guillet de Chatellus, “Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO4 microchip laser,” J. Opt. Soc. Am. A 28, 1741–1746 (2011). [CrossRef]
  20. E. Lacot, W. Glastre, O. Jacquin, O. Hugon, and H. Guillet de Chatellus, “Optimization of an autodyne laser interferometer for high speed confocal imaging,” J. Opt. Soc. Am. A 30, 60–70 (2013). [CrossRef]
  21. J. J. Zaykowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989). [CrossRef]
  22. M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993). [CrossRef]
  23. A. Bramati, J. P. Hermier, V. Jost, E. Giacobino, L. Fulbert, E. Molva, and J. J. Aubert, “Effects of pump fluctuations on intensity noise of Nd:YVO4 microchip lasers,” Eur. Phys. J. D 6, 513–521 (1999). [CrossRef]
  24. Y. I. Khanin, Principles of Laser Dynamics (Elsevier, 1995).
  25. Experimentally, the minus sign comes directly from the fact that when the RF voltage applied on the AOM increases, the intensity of the zero order beam of the AOM decreases and therefore the pumping power decreases.
  26. On Fig. 1, this complex gain (amplitude and phase) is the ratio between the input voltage applied on the AOM, and the output voltage of the electronic differentiator when the link between these two component is open (i.e., no direct connection)
  27. A. Bramati, J.-P. Hermier, V. Jost, and E. Giacobino, “Feedback control and nonlinear intensity noise of Nd:YVO4 microchip lasers,” Phys. Rev. A 62, 043806 (2000). [CrossRef]
  28. C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907–2913 (1994). [CrossRef]
  29. S. Bielawski, D. Derozier, and P. Glorieux, “Antiphase dynamics and polarization effects in the Nd-doped fiber laser,” Phys. Rev. A 46, 2812–2822 (1988).
  30. E. lacot and F. Stoeckel, “Nonlinear mode coupling in a microchip laser,” J. Opt. Soc. Am. B 13, 2034–2040 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited