OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2244–2252

Monte Carlo simulation of light scattering in the atmosphere and effect of atmospheric aerosols on the point spread function

Joshua Colombi and Karim Louedec  »View Author Affiliations

JOSA A, Vol. 30, Issue 11, pp. 2244-2252 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a Monte Carlo simulation for the scattering of light in the case of an isotropic light source. The scattering phase functions are studied particularly in detail to understand how they can affect the multiple light scattering in the atmosphere. We show that, although aerosols are usually in lower density than molecules in the atmosphere, they can have a non-negligible effect on the atmospheric point spread function. This effect is especially expected for ground-based detectors when large aerosols are present in the atmosphere.

© 2013 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 5, 2013
Revised Manuscript: September 10, 2013
Manuscript Accepted: September 11, 2013
Published: October 11, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Joshua Colombi and Karim Louedec, "Monte Carlo simulation of light scattering in the atmosphere and effect of atmospheric aerosols on the point spread function," J. Opt. Soc. Am. A 30, 2244-2252 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. S. Kopeika, I. Dror, and D. Sadot, “Causes of atmospheric blur: comment on atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am A 15, 3097–3106 (1998).
  2. J. V. Dave, “Effect of atmospheric conditions on remote sensing of a surface non-homogeneity,” Photogramm. Eng. Remote Sens. 46, 1173–1180 (1980).
  3. W. A. Pearce, “Monte Carlo study of the atmospheric spread function,” Appl. Opt. 25, 438–447 (1986). [CrossRef]
  4. D. Sadot and N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function,” J. Opt. Soc. Am. A 10, 172–179 (1993). [CrossRef]
  5. I. Dror and N. S. Kopeika, “Experimental comparison of turbulence modulation transfer function and aerosol modulation transfer function through the open atmosphere,” J. Opt. Soc. Am. A 12, 970–980 (1995). [CrossRef]
  6. J. Otterman and R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith,” Appl. Opt. 18, 2852–2860 (1979). [CrossRef]
  7. D. Tanre, P. Y. Deschamps, P. Duhaut, and M. Herman, “Adjacency effect produced by the atmospheric scattering in thematic mapper data,” J. Geophys. Res. 92, 12000–12006 (1987). [CrossRef]
  8. P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995). [CrossRef]
  9. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  10. H. C. Van De Hulst, Light Scattering by Small Particles (Dover, 1981).
  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  12. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef]
  13. B. Keilhauer and M. Will, for the Pierre Auger Collaboration, “Description of atmospheric conditions at the Pierre Auger Observatory using meteorological measurements and models,” Eur. Phys. J. Plus 127, 96 (2012).
  14. K. Louedec and R. Losno, for the Pierre Auger Collaboration, “Atmospheric aerosols at the Pierre Auger Observatory and environmental implications,” Eur. Phys. J. Plus 127, 97 (2012).
  15. G. Mie, “Beiträge zur Optik Trüber-Medien, speziell Kolloidaler Metallösungen,” Ann. Physik 25, 377–452 (1908).
  16. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef]
  17. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  18. D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270–3274 (1996). [CrossRef]
  19. O. Boucher, “On aerosol shortwave forcing and the Henyey-Greenstein phase function,” J. Atmos. Sci. 55, 128–134 (1998). [CrossRef]
  20. T. Binzoni, T. S. Leung, A. H. Gandjbakhche, D. Rüfenacht, and D. T. Delpy, “The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics,” Phys. Med. Biol. 51, N313–N322 (2006). [CrossRef]
  21. S. Metari and F. Deschênes, “A new convolution kernel for atmospheric point spread function applied to computer vision,” In Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV) (IEEE, 2007), pp 1–8.
  22. K. Louedec, S. Dagoret-Campagne, and M. Urban, “Ramsauer approach to Mie scattering of light on spherical particles,” Phys. Scr. 80, 035403 (2009). [CrossRef]
  23. K. Louedec and M. Urban, “Ramsauer approach for light scattering on non absorbing spherical particles and application to the Henyey-Greenstein phase function,” Appl. Opt 51, 7842–7852 (2012). [CrossRef]
  24. M. D. Roberts, “The role of atmospheric multiple scattering in the transmission of fluorescence light from extensive air showers,” J. Phys. G 31, 1291–1301 (2005).
  25. L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992). [CrossRef]
  26. B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, and A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997). [CrossRef]
  27. G. Zaccanti and P. Bruscaglioni, “Method of measuring the phase function of a turbid medium in the small scattering angle range,” Appl. Opt. 28, 2156–2164 (1989). [CrossRef]
  28. E. Trakhovsky and U. P. Oppenheim, “Determination of aerosol size distribution from observation of the aureole around a point source. 1: theoretical,” Appl. Opt. 23, 1003–1008 (1984). [CrossRef]
  29. E. Trakhovsky and U. P. Oppenheim, “Determination of aerosol size distribution from observation of the aureole around a point source. 2: experimental,” Appl. Opt. 23, 1848–1852 (1984). [CrossRef]
  30. J. Abraham, for the Pierre Auger Collaboration, “The fluorescence detector of the Pierre Auger Observatory,” Nucl. Instrum. Methods Phys. Res. A 620, 227–251 (2010). [CrossRef]
  31. K. Louedec, for the Pierre Auger Collaboration, “Atmospheric monitoring at the Pierre Auger Observatory—Status and Update,” in Proceedings of the 32nd ICRC, Beijing, (2011), Vol. 2, pp. 63–66.
  32. J. Baüml, for the Pierre Auger Collaboration, “Measurement of the optical properties of the Auger fluorescence telescopes,” in Proceedings of the 33rd ICRC, Rio de Janeiro, (2013), pp. 15–18. arxiv:astro-ph/1307.5059.
  33. P. Assis, R. Conceiçao, P. Gonçalves, M. Pimenta, and B. Tomé, for the Pierre Auger Collaboration, “Multiple scattering measurement with laser events,” Astrophys. Space Sci. Trans. 7, 383–386 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited