OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2253–2258

Experimental evaluation of speckle suppression efficiency using a moving 2D Barker code DOE

A. Lapchuk, O. V. Shyhovets, A. Kryuchyn, V. Petrov, G. A. Pashkevich, O. V. Bogdan, A. Kononov, and A. Klymenko  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2253-2258 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002253


View Full Text Article

Enhanced HTML    Acrobat PDF (1015 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the findings from an experimental evaluation of speckle suppression efficiency using a method based on a moving 2D Barker code diffractive optical element (DOE). The optical setup and the optical scheme parameters of the method are presented. A speckle contrast of 4.45.3% and speckle suppression coefficient (coefficient of speckle contrast reduction) of k>8 was obtained in experiments. However, the experimentally obtained speckle suppression coefficient was approximately 1.5 times smaller than the theoretical prediction. It is speculated that the discrepancy between the theoretical and the experimental data is due to an inexact match between the optical setup and the optimal optical parameters of the method. Analysis of the experimental data revealed that once the optical scheme is optimized, it will be possible to obtain a speckle suppression that is closer to the theoretical prediction.

© 2013 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.6150) Imaging systems : Speckle imaging

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: July 8, 2013
Revised Manuscript: August 27, 2013
Manuscript Accepted: September 17, 2013
Published: October 11, 2013

Citation
A. Lapchuk, O. V. Shyhovets, A. Kryuchyn, V. Petrov, G. A. Pashkevich, O. V. Bogdan, A. Kononov, and A. Klymenko, "Experimental evaluation of speckle suppression efficiency using a moving 2D Barker code DOE," J. Opt. Soc. Am. A 30, 2253-2258 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of Grating Light Valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004). [CrossRef]
  2. M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in 15th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 568–573.
  3. R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008), pp. 565–588.
  4. W. O. Davis, R. Sprague, and J. Miller, “MEMS-based picoprojector display,” in IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2008), pp. 31–32.
  5. S. K. Yun, J. H. Song, I. J. Yeo, Y. J. Choi, V. I. Yurlov, S. D. An, H. W. Park, H. S. Yang, Y. G. Lee, K. B. Han, I. Shyshkin, A. S. Lapchuk, K. Y. Oh, S. W. Ryu, J. W. Jang, C. S. Park, C. G. Kim, S. K. Kim, E. J. Kim, K. S. Woo, J. S. Yang, E. J. Kim, J. H. Kim, S. H. Byun, S. W. Lee, O. K. Lim, J. P. Cheong, Y. N. Hwang, G. Y. Byun, J. H. Kyoung, S. K. Yoon, J. K. Lee, T. W. Lee, S. K. Hong, Y. S. Hong, D. H. Park, J. C. Kang, W. C. Shin, S. I. Lee, S. K. Oh, B. K. Song, H. Y. Kim, C. M. Koh, Y. H. Ryu, H. K. Lee, and Y. K. Raek, “Spatial optical modulator (SOM): high density diffractive laser projection display,” Proc. SPIE 6487, 648710 (2007). [CrossRef]
  6. S. K. Yun, J. H. Song, S. D. An, I. J. Yeo, Y. J. Cho, Y. G. Lee, H. W. Park, K. B. Han, H. S. Yang, V. Yurlov, I. Shyshkin, A. Lapchuk, H. Y. Kim, J. W. Jang, J. H. Kyoung, J. S. Yang, S. K. Yoon, Ch. S. Park, J. P. Cheong, Y. N. Hwang, K. S. Woo, S. W. Ryu, S. W. Lee, Ch. M. Koh, Y. K. Baek, D. H. Bae, H. K. Lee, J. H. Lee, Y. H. Ryu, H. Y. Hwang, Ch. M. Yang, O. K. Lim, D. H. Park, S. H. An, J. H. Bae, S. M. Cho, B. S. Go, S. K. Hong, H. Ph. Jung, S. J. Kim, K. U. Lee, J. H. Park, J. H. Yang, G. Y. Byun, S. H. Byun, Y. J. Cho, Ch. G. Kim, J. H. Kim, S. K. Kim, S. I. Lee, W. H. Lee, K. Y. Oh, S. K. Oh, W. Ch. Shin, B. K. Song, and E. M. Bourim, “A novel diffractive micro-optical modulator for mobile display applications,” Proc. SPIE 6887, 688702 (2008). [CrossRef]
  7. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays,” Appl. Opt. 49, F79–F98 (2010). [CrossRef]
  8. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Roberts, 2006).
  9. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51, 1894–1904 (2012). [CrossRef]
  10. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 72320Y (2009). [CrossRef]
  11. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998). [CrossRef]
  12. Sh. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010). [CrossRef]
  13. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004). [CrossRef]
  14. W. Gao, Zh. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technol. 8, 291–295 (2012). [CrossRef]
  15. V. Yurlov, A. Lapchuk, S.-K. Yun, J.-H. Song, and H.-S. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179–187 (2008). [CrossRef]
  16. M. N. Akram, V. Kartashov, and Zh. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–445 (2010). [CrossRef]
  17. A. Lapchuk, A. Kryuchyn, V. Petrov, V. Yurlov, and V. Klymenko, “Full speckle suppression in laser projectors using two Barker code-type optical diffractive elements,” J. Opt. Soc. Am. A 30, 22–31 (2013). [CrossRef]
  18. A. Lapchuk, A. Kryuchyn, V. Petrov, and V. Klymenko, “Optimal speckle suppression in laser projectors using a single two-dimensional Barker code diffractive optical element,” J. Opt. Soc. Am. A 30, 227–232 (2013). [CrossRef]
  19. A. Lapchuk, A. Kryuchyn, V. Petrov, O. V. Shyhovets, G. A. Pashkevich, O. V. Bogdan, A. Kononov, and V. Klymenko, “Optical schemes for speckle suppression by Barker code diffractive optical elements,” J. Opt. Soc. Am. A 30, 1760–1767 (2013). [CrossRef]
  20. A. Lapchuk, V. Petrov, I. Beliak, and A. Kryuchyn, “The method of decreasing speckle noise in laser projector system,” Ukraine patent application No. a 2013 04828 (April16, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited