OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2266–2272

Role of diversity on the singular values of linear scattering operators: the case of strip objects

Raffaele Solimene, Maria Antonia Maisto, and Rocco Pierri  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2266-2272 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002266


View Full Text Article

Enhanced HTML    Acrobat PDF (771 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The singular value decomposition of the far-zone scattering operator for weak strip-like scattering objects is studied under multiple view and/or multiple frequency illuminations. The aim is to highlight how such diversities impact the number of degrees of freedom (NDF) of the scattering problem. When the angles of incidence and/or frequencies vary within discrete finite sets, the singular values are analytically determined. It is shown that they exhibit a multistep behavior. For the continuous case, upper and lower bounds are found, which allows us to obtain estimations for the NDF dependending on the parameters of the configuration.

© 2013 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(290.3200) Scattering : Inverse scattering
(350.7420) Other areas of optics : Waves
(100.3200) Image processing : Inverse scattering

ToC Category:
Image Processing

History
Original Manuscript: June 5, 2013
Revised Manuscript: September 1, 2013
Manuscript Accepted: September 19, 2013
Published: October 11, 2013

Citation
Raffaele Solimene, Maria Antonia Maisto, and Rocco Pierri, "Role of diversity on the singular values of linear scattering operators: the case of strip objects," J. Opt. Soc. Am. A 30, 2266-2272 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2266


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Riesz and B. Nagy, Functional Analysis (Dover, 1990).
  2. G. T. di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–804 (1969). [CrossRef]
  3. O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989). [CrossRef]
  4. D. A. Miller, “How complicated must an optical component be?” J. Opt. Soc. Am. A 30, 238–251 (2013). [CrossRef]
  5. D. A. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681–1699 (2000). [CrossRef]
  6. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000). [CrossRef]
  7. R. Somaraju and J. Trumpf, “Degrees of freedom of a communication channel: using DOF singular values,” IEEE Trans. Inf. Theory 56, 1560–1573 (2010). [CrossRef]
  8. A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003). [CrossRef]
  9. A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes applied to axicons,” Opt. Express 12, 377–383 (2004). [CrossRef]
  10. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).
  11. N. Magnoli and G. A. Viano, “On the eigenfunction expansions associated with Fredholm integral equation of first kind in the presence of noise,” J. Math. Anal. Appl. 197, 188–206 (1996). [CrossRef]
  12. R. A. Frazin, D. G. Fischer, and P. S. Carney, “Information content of the near field: two-dimensional samples,” J. Opt. Soc. Am. A 21, 1050–1057 (2004). [CrossRef]
  13. D. G. Fischer, R. A. Frazin, M. Asipauskas, and P. S. Carney, “Information content of the near field: three-dimensional samples,” J. Opt. Soc. Am. A 28, 296–306 (2011). [CrossRef]
  14. E. De Micheli and G. A. Viano, “Metric and probabilistic information associated with Fredholm integral equations of the first kind,” J. Integral Equ. Appl. 14, 283–310 (2002). [CrossRef]
  15. F. Gori and G. Guattari, “Shannon number and degrees of freedom of an image,” Opt. Commun. 7, 163–165 (1973). [CrossRef]
  16. D. Slepian and H. O. Pollak, “Prolate spheroidal wave function, Fourier analysis and uncertainty I,” Bell Syst. Tech. J. 40, 43–63 (1961). [CrossRef]
  17. H. J. Landau and H. O. Pollak, “Prolate spheroidal wave function, Fourier analysis and uncertainty II,” Bell Syst. Tech. J. 40, 65–84 (1961). [CrossRef]
  18. L.-J. Deng, T.-Z. Huang, X.-L. Zhao, L. Zhao, and S. Wang, “Signal restoration combining Tikhonov regularization and multilevel method with thresholding strategy,” J. Opt. Soc. Am. A 30, 948–955 (2013). [CrossRef]
  19. E. De Micheli, N. Magnoli, and G. A. Viano, “On the regularization of Fredholm integral equations of the first kind,” SIAM J. Math. Anal. 29, 855–877 (1998). [CrossRef]
  20. D. L. Marks, “A family of approximations spanning the Born and Rytov scattering series,” Opt. Express 14, 8837–8847 (2006). [CrossRef]
  21. D. G. Fischer, “The information content of weakly scattered fields: implications for the near-field imaging of three-dimensional structures,” J. Mod. Opt. 47, 1359–1374 (2000).
  22. R. Persico, “On the role of measurement configuration in contactless GPR data processing by means of linear inverse scattering,” IEEE Trans. Antennas Propag. 54, 2062–2071 (2006). [CrossRef]
  23. R. Pierri and F. Soldovieri, “On the information content of the radiated fields in the near zone over bounded domains,” Inverse Probl. 14, 321–337 (1998). [CrossRef]
  24. R. Pierri, A. Liseno, F. Soldovieri, and R. Solimene, “In-depth resolution for a strip source in the Fresnel zone,” J. Opt. Soc. Am. A 18, 352–359 (2001). [CrossRef]
  25. R. Pierri, A. Liseno, R. Solimene, and F. Tartaglione, “In-depth resolution from multifrequency Born fields scattered by a dielectric strip in the Fresnel zone,” J. Opt. Soc. Am. A 19, 1234–1238 (2002). [CrossRef]
  26. R. Solimene, G. Leone, and R. Pierri, “Multistatic multiview resolution from Born fields for strips in Fresnel zone,” J. Opt. Soc. Am. A 21, 1402–1406 (2004). [CrossRef]
  27. A. Brancaccio, G. Leone, and R. Pierri, “Information content of Born scattered fields: results in the circular cylindrical case,” J. Opt. Soc. Am. A 15, 1909–1917 (1998). [CrossRef]
  28. R. Solimene and R. Pierri, “Localization of a planar perfect-electric-conduting interface embedded in a half-space,” J. Opt. A 8, 10–16 (2006). [CrossRef]
  29. R. Solimene, R. Barresi, and G. Leone, “Localizing a buried planar perfect electric conducting interface by multi-view data,” J. Opt. A 10, 015010 (2008). [CrossRef]
  30. F. Gori, “Integral equations for incoherent imagery,” J. Opt. Soc. Am. 64, 1237–1243 (1974). [CrossRef]
  31. F. Gori and C. Palma, “On the eigenvalues of the sinc2 kernel, “ J. Phys. A 8, 1709–1719 (1975). [CrossRef]
  32. D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery,” SIAM J. Appl. Math. 49, 906–931 (1989). [CrossRef]
  33. G. Newsam and R. Barakat, “Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics,” J. Opt. Soc. Am. A 2, 2040–2045 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited