OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2286–2290

Study on the heterodyning scattering of retroreflective free-space optical communication with optical heterodyning

Honghui Jia, Hongwei Yin, Hailiang Zhang, Xiaofeng Wang, Shengli Chang, and Juncai Yang  »View Author Affiliations

JOSA A, Vol. 30, Issue 11, pp. 2286-2290 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retroreflective free-space optical communication is important because of advantages such as small volume, low weight, and low power consumption. Link failure caused by bad weather conditions will occur because of the attenuated retroreflective signal and the increased scattering of the transmitted light. The scattering effect can be reduced because the physical properties (including polarization, wavefront, and phase) of the scattering signal are different from those of the retroreflective signal. The physical properties of the scattering signal are obtained using a polarization-sensitive Monte Carlo model, and the heterodyning scattering signal is obtained using heterodyning theory. Results show that, with optical heterodyning, the scattering effect is efficiently reduced, and advantages such as better adaptability to bad weather conditions, longer communication range, more compact transceiver design, larger covering area of the optical receiver, and easier target acquisition for the retromodulator than before can also be obtained.

© 2013 Optical Society of America

OCIS Codes
(290.1310) Scattering : Atmospheric scattering
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:

Original Manuscript: July 29, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 26, 2013
Published: October 17, 2013

Honghui Jia, Hongwei Yin, Hailiang Zhang, Xiaofeng Wang, Shengli Chang, and Juncai Yang, "Study on the heterodyning scattering of retroreflective free-space optical communication with optical heterodyning," J. Opt. Soc. Am. A 30, 2286-2290 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Nicolae, C. Talianu, C. Radu, and S. Stefan, “Combining OPAC and lidar,” Proc. SPIE 6750, 67500H (2007).
  2. F. Rocadenbosch, M. N. M. Reba, M. Sicard, and A. Comeron, “Practical analytical backscatter error bars for elastic one-component lidar inversion algorithm,” Appl. Opt. 49, 3380–3393 (2010). [CrossRef]
  3. D. Kedar and S. Arnon, “Backscattering-induced crosstalk in WDM optical wireless communication,” J. Lightwave Technol. 23, 2023–2030 (2005). [CrossRef]
  4. L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, Retroreflective Free-space Optical Communication: System Analysis and Performance (Swedish Defence Research Agency, 2001).
  5. L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, Retrocommunication—Final Report (Swedish Defence Research Agency, 2004).
  6. G. C. Gilbreath and W. S. Rabinovich, “Research in free space optical data transfer at the U.S. Naval Research Laboratory,” Proc. SPIE 5160, 225 (2004).
  7. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005). [CrossRef]
  8. W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45  Mbps cat’s eye modulating retro-reflector link over 7  Km,” Proc. SPIE 6304, 63040Q (2007).
  9. A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” Proc. SPIE 7480, 74800L (2009).
  10. P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.
  11. S. Arnon, “Network of sensors: acquisition probability,” J. Opt. Soc. Am. A 24, 2758–2765 (2007). [CrossRef]
  12. H. W. Yin, T. P. Lan, H. L. Zhang, H. H. Jia, S. L. Chang, and J. C. Yang, “Theoretical evaluation of scattering effect on retroreflective free-space optical communication,” J. Opt. Soc. Am. A 29, 2608–2611 (2012). [CrossRef]
  13. H. W. Yin, S. L. Chang, H. H. Jia, J. K. Yang, and J. C. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009). [CrossRef]
  14. H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009). [CrossRef]
  15. V. V. Protopopov, Laser Heterodyning, Springer Series in Optical Sciences (Springer, 2009).
  16. G. J. Olson, H. W. Mocker, N. A. Demma, and J. B. Ross, “Coherent CO2 laser communication system with modulable retroreflectors,” Appl. Opt. 34, 2033–2044 (1995). [CrossRef]
  17. H. W. Yin, H. H. Jia, H. L. Zhang, X. F. Wang, S. L. Chang, and J. C. Yang, “Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation,” J. Opt. Soc. Am. A 28, 2082–2085 (2011). [CrossRef]
  18. H. C. v. d. Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  20. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  21. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL” (Ontar Corporation, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited