OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2334–2338

Perfect imaging with planar interfaces

Stephen Oxburgh and Johannes Courtial  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2334-2338 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002334


View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the most general homogenous, planar, light-ray-direction-changing sheet that performs one-to-one imaging between object space and image space. This is a nontrivial special case (of the sheet being homogenous) of an earlier result [Opt. Commun. 282, 2480 (2009)]. Such a sheet can be realized, approximately, with generalized confocal lenslet arrays.

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(110.0110) Imaging systems : Imaging systems
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Geometric Optics

History
Original Manuscript: August 23, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: September 27, 2013
Published: October 24, 2013

Citation
Stephen Oxburgh and Johannes Courtial, "Perfect imaging with planar interfaces," J. Opt. Soc. Am. A 30, 2334-2338 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2334


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Maxwell, “Problems (3),” The Cambridge and Dublin Mathematical Journal 8, 188 (1853).
  2. J. C. Maxwell, “Solutions of problems (prob. 3, vol. viii. p. 188),” The Cambridge and Dublin Mathematical Journal 9, 9–11 (1854).
  3. R. K. Luneburg, Mathematical Theory of Optics (Brown University, 1944), pp. 189–213.
  4. J. E. Eaton, “On spherically symmetric lenses,” IRE Trans. Antennas Propag. 4, 66–71 (1952). [CrossRef]
  5. T. Tyc, L. Herzánová, M. Šarbort, and K. Bering, “Absolute instruments and perfect imaging in geometrical optics,” New J. Phys. 13, 115004 (2011). [CrossRef]
  6. M. Šarbort and T. Tyc, “Spherical media and geodesic lenses in geometrical optics,” J. Opt. 14, 075705 (2012). [CrossRef]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  8. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  9. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef]
  10. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef]
  11. U. Leonhardt, “Perfect imaging without negative refraction,” New J. Phys. 11, 093040 (2009). [CrossRef]
  12. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  13. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  14. J. Courtial, “Ray-optical refraction with confocal lenslet arrays,” New J. Phys. 10, 083033 (2008). [CrossRef]
  15. A. C. Hamilton and J. Courtial, “Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit,” New J. Phys. 11, 013042 (2009). [CrossRef]
  16. J. Courtial, “Geometric limits to geometric optical imaging with infinite, planar, non-absorbing sheets,” Opt. Commun. 282, 2480–2483 (2009). [CrossRef]
  17. J. Courtial and T. Tyc, “Generalised laws of refraction that can lead to wave-optically forbidden light-ray fields,” J. Opt. Soc. Am. A 29, 1407–1411 (2012). [CrossRef]
  18. A. C. Hamilton and J. Courtial, “Generalized refraction using lenslet arrays,” J. Opt. A 11, 065502 (2009). [CrossRef]
  19. J. Courtial, “Standard and non-standard metarefraction with confocal lenslet arrays,” Opt. Commun. 282, 2634–2641 (2009). [CrossRef]
  20. T. Maceina, G. Juzeliūnas, and J. Courtial, “Quantifying metarefraction with confocal lenslet arrays,” Opt. Commun. 284, 5008–5019 (2011). [CrossRef]
  21. S. Oxburgh, C. D. White, G. Antoniou, and J. Courtial, “Generalised law of refraction for generalised confocal lenslet arrays,” Opt. Commun. (to be published).
  22. D. Lambert, A. C. Hamilton, G. Constable, H. Snehanshu, S. Talati, and J. Courtial, “TIM, a ray-tracing program for METATOY research and its dissemination,” Comput. Phys. Commun. 183, 711–732 (2012). [CrossRef]
  23. S. Oxburgh, T. Tyc, and J. Courtial, “Dr TIM: ray-tracer TIM, with additional specialist capabilities,” Comput. Phys. Commun. (submitted).
  24. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited