OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2339–2346

Turbulence distance for laser beams propagating through non-Kolmogorov turbulence

Yongping Huang and Bin Zhang  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2339-2346 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002339


View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the second-order moments and the non-Kolmogorov turbulence spectrum, the general analytical expression for the turbulence distance of laser beams propagating through non-Kolmogorov turbulence is derived, which depends on the non-Kolmogorov turbulence parameters including the generalized exponent parameter α, inner scale l0, and outer scale L0 and the initial second-order moments of the beams at the plane of z=0. Taking the partially coherent Hermite–Gaussian linear array (PCHGLA) beam as an illustrative example, the effects of non-Kolmogorov turbulence and array parameters on the turbulence distance are discussed in detail. The results show that the turbulence distance zMx(α) of PCHGLA beams through non-Kolmogorov turbulence first decreases to a dip and then increases with increasing α, and the value of zMx(α) increases with increasing beam number and beam order and decreasing coherence parameter, meaning less influence of non-Kolmogorov turbulence on partially coherent array beams than that of fully coherent array beams and a single partially coherent beam. However, the value of zMx(α) for PCHGLA beams first increases nonmonotonically with the increasing of the relative beam separation x0 for x01 and increases monotonically as x0 increases for x0>1. Moreover, the variation behavior of the turbulence distance with the generalized exponent parameter, inner scale, and outer scale of the turbulence and the beam number is similar, but different with the relative beam separation for coherent and incoherent combination cases.

© 2013 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(140.3290) Lasers and laser optics : Laser arrays
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

History
Original Manuscript: June 19, 2013
Revised Manuscript: October 6, 2013
Manuscript Accepted: October 7, 2013
Published: October 24, 2013

Citation
Yongping Huang and Bin Zhang, "Turbulence distance for laser beams propagating through non-Kolmogorov turbulence," J. Opt. Soc. Am. A 30, 2339-2346 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2339


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Dogariu, S. Amarande, and S. Amarande, “Propagation of partially coherent beams turbulence-induced degradation,” Opt. Lett. 28, 10–12 (2003). [CrossRef]
  2. S. A. Ponomarenko, J. J. Greffet, and E. Wolf, “The diffusion of partially coherent beams in turbulent media,” Opt. Commun. 208, 1–8 (2002). [CrossRef]
  3. Y. Q. Dan and B. Zhang, “Second moments of partially coherent beams in atmospheric turbulence,” Opt. Lett. 34, 563–565 (2009). [CrossRef]
  4. Y. Q. Dan and B. Zhang, “Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere,” Opt. Express 16, 15563–15575 (2008). [CrossRef]
  5. X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010). [CrossRef]
  6. X. Ji and X. Shao, “Influence of turbulence on the beam propagation factor of Gaussian Schell-model array beams,” Opt. Commun. 283, 869–873 (2010). [CrossRef]
  7. X. Ji and Z. Pu, “Angular spread of Gaussian Schell-model array beams propagating through atmospheric turbulence,” Appl. Phys. B 93, 915–923 (2008). [CrossRef]
  8. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592–1598 (2002). [CrossRef]
  9. X. Li, X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Turbulence distance of radial Gaussian Schell-model array beams,” Appl. Phys. B 98, 557–565 (2010). [CrossRef]
  10. Y. Q. Dan, S. G. Zeng, B. Y. Hao, and B. Zhang, “Range of turbulence-independent propagation and Rayleigh range of partially coherent beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 426–434 (2010).
  11. W. D. Bilida, J. D. Strohschein, and H. J. J. Seguin, “High-power 24 channel radial array slab RF-excited carbon dioxide laser,” Proc. SPIE 2987, 13–21 (1997). [CrossRef]
  12. H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagating characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron. 32, 400–407 (1996). [CrossRef]
  13. B. Lü and H. Ma, “Beam propagation properties of radial laser arrays,” J. Opt. Soc. Am. A 17, 2005–2009 (2000). [CrossRef]
  14. Y. Zhu, D. Zhao, and X. Du, “Propagation of stochastic Gaussian-Schell model array beams in turbulent atmosphere,” Opt. Express 16, 18437–18442 (2008). [CrossRef]
  15. X. Du and D. Zhao, “Propagation characteristics of stochastic electromagnetic array beams,” Appl. Phys. B 93, 901–905 (2008). [CrossRef]
  16. H. T. Eyyuboğlu, Y. Baykal, and Y. Cai, “Scintillations of laser array beams,” Appl. Phys. B 91, 265–271 (2008). [CrossRef]
  17. X. Ji, T. Zhang, and X. Jia, “Beam propagation factor of partially coherent Hermite–Gaussian array beams,” J. Opt. A 11, 105705 (2009). [CrossRef]
  18. X. Ji and Z. Pu, “Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence,” Opt. Commun. 283, 3884–3890 (2010). [CrossRef]
  19. Y. Cai, Y. Chen, H. T. Eyyuboglu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007). [CrossRef]
  20. Y. L. Ai and Y. Q. Dan, “Range of turbulence-negligible propagation of Gaussian Schell-model array beams,” Opt. Commun. 284, 3216–3220 (2011). [CrossRef]
  21. M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997). [CrossRef]
  22. M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect on non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999). [CrossRef]
  23. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007). [CrossRef]
  24. Y. P. Huang, Z. H. Gao, and B. Zhang, “The Rayleigh range of elegant Hermite–Gaussian beams in non-Kolmogorov turbulence,” Opt. Lasers Technol. 50, 125–129 (2013). [CrossRef]
  25. J. Serna, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). [CrossRef]
  26. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, S1027–S1049 (1992). [CrossRef]
  27. Y. P. Huang, G. P. Zhao, D. He, and Z. C. Duan, “Spreading and M2-factor of elegant Hermite-Gaussian beams through non-Kolmogorov turbulence,” J. Mod. Opt. 58, 912–917 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited