OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2356–2360

Transmission resonances in a metal film with arrays of asymmetry cross-shaped apertures

Peng Zhang, Ming Zhao, Lin Wu, Yu Zheng, Jian Duan, and ZhenYu Yang  »View Author Affiliations

JOSA A, Vol. 30, Issue 11, pp. 2356-2360 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied numerically the transmission properties of the periodic array of asymmetric cross-shaped apertures in an Ag film. The relative positions of the two orthogonally oriented rectangular apertures are varied, rather than their length or width. Each transmission peak of the original symmetric cross-shaped apertures will split into two peaks in the case of the asymmetric cross-shaped apertures when the electric field is perpendicular to the long axis of the unchanged rectangular aperture. The wavelength of the shift peak has a linear relation with the asymmetry. This resonance response mainly results from the excitation of the trapped mode provided by the structural symmetry breaking. A distribution of the magnetic field and a simple Lagrange model are used to interpret these phenomena. In addition, the intensity of the transmission peaks can be tuned by changing the incident polarization angle.

© 2013 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.0230) Optical devices : Optical devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 31, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 7, 2013
Published: October 25, 2013

Peng Zhang, Ming Zhao, Lin Wu, Yu Zheng, Jian Duan, and ZhenYu Yang, "Transmission resonances in a metal film with arrays of asymmetry cross-shaped apertures," J. Opt. Soc. Am. A 30, 2356-2360 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  3. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004). [CrossRef]
  4. H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12, 3664–3672 (2004). [CrossRef]
  5. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett. 29, 1414–1416 (2004). [CrossRef]
  6. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]
  7. J. H. Kim and P. J. Moyer, “Transmission characteristics of metallic equilateral triangular nanohole,” Appl. Phys. Lett. 89, 121106 (2006). [CrossRef]
  8. A. V. Krasavin, A. S. Schwanecke, and N. I. Zheludev, “Extraordinary properties of light transmission through a small chiral hole in a metallic screen,” J. Opt. A 8, S98–S105 (2006). [CrossRef]
  9. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular lattice hole arrays in aluminum films,” Opt. Express 18, 14055–14062 (2010).
  10. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002). [CrossRef]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  12. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  13. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005). [CrossRef]
  14. A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A 7, S90–S96 (2005). [CrossRef]
  15. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef]
  16. J. Li, H. Lu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009). [CrossRef]
  17. S. Wu, Z. Zhang, Y. Zhang, K. Y. Zhang, L. Zhou, X. J. Zhang, and Y. Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013). [CrossRef]
  18. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef]
  19. R. Sambles, “More than transparent,” Nature 391, 641–642 (1998). [CrossRef]
  20. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  21. T. Thio, H. J. Lezec, and T. W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films,” Physica B 279, 90–93 (2000). [CrossRef]
  22. A. D. Sheehan, J. Quinn, S. Daly, P. Dillon, and R. O’Kennedy, “The development of novel miniaturized immuno-sensing devices: a review of a small technology with a large future,” Anal. Lett. 36, 511–537 (2003). [CrossRef]
  23. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1144 (2000). [CrossRef]
  24. R. Qiang, J. Chen, T. Zhao, S. Wang, P. Ruchhoeft, and M. Morgan, “Modelling of infrared bandpass filters using three-dimensional FDTD method,” Electron. Lett. 41, 914–915 (2005). [CrossRef]
  25. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007). [CrossRef]
  26. R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood, “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett. 32, 3414–3416 (2007). [CrossRef]
  27. M. D. He, J. Q. Liu, Z. Q. Gong, Y. F. Luo, and X. S. Chen, “Light transmission through metal films perforated with arrays of asymmetric cross-shaped hole,” Solid. State. Commun. 150, 104–108 (2010). [CrossRef]
  28. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37, 1820–1822 (2012). [CrossRef]
  29. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef]
  30. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006). [CrossRef]
  31. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007). [CrossRef]
  32. Y. B. Qiu, L. Zhan, and Y. X. Xia, “Polarization-manipulated dual-band enhanced optical transmission through subwavelength rectangular hole array on metallic film,” IEEE J. Sel. Top. Quantum Electron. 19, 4600106 (2013). [CrossRef]
  33. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007). [CrossRef]
  34. B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  35. M. D. He, J. Q. Liu, and K. J. Wang, “Transmission resonances in a symmetry-broken square coaxial aperture in a metal film,” J. Phys. D 45, 345304 (2012). [CrossRef]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  37. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3, 157–162 (2009). [CrossRef]
  38. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009). [CrossRef]
  39. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007). [CrossRef]
  40. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  41. H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrage model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81, 241403(R) (2010). [CrossRef]
  42. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004). [CrossRef]
  43. J. B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73, 121401(R) (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited