OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2361–2371

Intermodal energy transfer in a tapered optical fiber: optimizing transmission

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco  »View Author Affiliations

JOSA A, Vol. 30, Issue 11, pp. 2361-2371 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2009 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental and theoretical study of the energy transfer between modes during the tapering process of an optical nanofiber through spectrogram analysis. The results allow optimization of the tapering process, and we measure transmission in excess of 99.95% for the fundamental mode. We quantify the adiabaticity condition through calculations and place an upper bound on the amount of energy transferred to other modes at each step of the tapering, giving practical limits to the tapering angle.

© 2013 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(350.5500) Other areas of optics : Propagation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 26, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: September 30, 2013
Published: October 25, 2013

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, "Intermodal energy transfer in a tapered optical fiber: optimizing transmission," J. Opt. Soc. Am. A 30, 2361-2371 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973). [CrossRef]
  2. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004). [CrossRef]
  3. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef]
  4. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010). [CrossRef]
  5. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999). [CrossRef]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef]
  7. F. Orucevic, V. Lefèvre-Seguin, and J. Hare, “Transmittance and near-field characterization of sub-wavelength tapered optical fibers,” Opt. Express 15, 13624–13629 (2007). [CrossRef]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  9. V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004). [CrossRef]
  10. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef]
  11. J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).
  12. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000). [CrossRef]
  13. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978). [CrossRef]
  14. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986). [CrossRef]
  15. R. J. Cook and R. K. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–260 (1982). [CrossRef]
  16. K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986). [CrossRef]
  17. N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995). [CrossRef]
  18. S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001). [CrossRef]
  19. A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012). [CrossRef]
  20. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006). [CrossRef]
  21. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011). [CrossRef]
  22. C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, “Nanofiber Fabry–Perot microresonator for nonlinear optics and cavity quantum electrodynamics,” Opt. Lett. 37, 1949–1951 (2012). [CrossRef]
  23. F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universitat, 2007).
  24. J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).
  25. http://drum.lib.umd.edu .
  26. A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).
  27. Photon Design Ltd., “FIMMWAVE/FIMMPROP,” http://www.photond.com .
  28. T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  29. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011). [CrossRef]
  30. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited