OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2433–2443

Coherent-mode representation of partially polarized pulsed electromagnetic beams

Timo Voipio, Tero Setälä, and Ari T. Friberg  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2433-2443 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002433


View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent-mode representation provides physical insight and computational simplification into the analysis of random optical signals. In this work, we present the coherent-mode decomposition for pulsed electromagnetic beam fields. We show that the mode decomposition can be done for any valid space–frequency or space–time coherence matrix representing nonstationary pulsed electric field, and moreover, the spectral and temporal modes are connected via a Fourier transform relation. The analysis also yields the coherent modes of electromagnetic time-domain signals in temporal optics. We present the overall degree of coherence as a measure of the average temporal or spectral and spatial coherence of the beam. Several illustrative examples are discussed analytically and numerically.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(260.2110) Physical optics : Electromagnetic optics
(320.5550) Ultrafast optics : Pulses

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 24, 2013
Manuscript Accepted: September 24, 2013
Published: October 30, 2013

Citation
Timo Voipio, Tero Setälä, and Ari T. Friberg, "Coherent-mode representation of partially polarized pulsed electromagnetic beams," J. Opt. Soc. Am. A 30, 2433-2443 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Wolf, “New spectral representation of random sources and of the partially coherent fields that they generate,” Opt. Commun. 38, 3–6 (1981). [CrossRef]
  2. E. Wolf, “New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  3. J. Huttunen, A. T. Friberg, and J. Turunen, “Scattering of partially coherent electromagnetic fields by microstructured media,” Phys. Rev. E 52, 3081–3092 (1995). [CrossRef]
  4. H. Lajunen, J. Tervo, and P. Vahimaa, “Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses,” J. Opt. Soc. Am. A 21, 2117–2123 (2004). [CrossRef]
  5. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78–84 (2003). [CrossRef]
  6. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space–frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004). [CrossRef]
  7. T. Setälä, J. Lindberg, K. Blomstedt, J. Tervo, and A. T. Friberg, “Coherent-mode representation of a statistically homogeneous and isotropic electromagnetic field in a spherical volume,” Phys. Rev. E 71, 036118 (2005).
  8. G. P. Agraval, Nonlinear Fiber Optics (Elsevier, 2007).
  9. T. Voipio, T. Setälä, and A. T. Friberg, “Polarization changes in temporal imaging with pulses of random light,” Opt. Express 21, 8987–9004 (2013). [CrossRef]
  10. M. Erkintalo, M. Surakka, J. Turunen, A. T. Friberg, and G. Genty, “Coherent-mode representation of supercontinuum,” Opt. Lett. 37, 169–171 (2012). [CrossRef]
  11. T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27, 2549–2555 (2010). [CrossRef]
  12. H. Kellock, T. Setälä, T. Shirai, and A. T. Friberg, “Image quality in double- and triple-intensity ghost imaging with classical partially polarized light,” J. Opt. Soc. Am. A 29, 2459–2468 (2012). [CrossRef]
  13. D. A. B. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681–1699 (2000). [CrossRef]
  14. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000). [CrossRef]
  15. P. Martinsson, H. Lajunen, and A. T. Friberg, “Communication modes with partially coherent fields,” J. Opt. Soc. Am. A 24, 3336–3342 (2007). [CrossRef]
  16. P. Vahimaa and J. Turunen, “Independent-elementary-pulse representation for non stationary fields,” Opt. Express 14, 5007–5012 (2006). [CrossRef]
  17. A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007). [CrossRef]
  18. A. Burvall, A. Smith, and C. Dainty, “Elementary functions: propagation of partially coherent light,” J. Opt. Soc. Am. A 26, 1721–1729 (2009). [CrossRef]
  19. J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, “Shifted-elementary-mode representation for partially coherent vectorial fields,” J. Opt. Soc. Am. A 27, 2004–2014 (2010). [CrossRef]
  20. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  21. T. Voipio, T. Setälä, and A. T. Friberg, “Partial polarization theory of pulsed optical beams,” J. Opt. Soc. Am. A 30, 71–81 (2013). [CrossRef]
  22. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003). [CrossRef]
  23. F. Riesz and B. Sz.-Nagy, Functional Analysis (Ungar, 1978).
  24. T. Setälä, J. Tervo, and A. T. Friberg, “Theorems on complete electromagnetic coherence in the space-time domain,” Opt. Commun. 238, 229–236 (2004). [CrossRef]
  25. M. J. Bastiaans, “The Wigner distribution function of partially coherent light,” Opt. Acta 28, 1215–1224 (1981). [CrossRef]
  26. P. Vahimaa and J. Tervo, “Unified measures for optical fields: degree of polarization and effective degree of coherence,” J. Opt. A 6, S41–S44 (2004). [CrossRef]
  27. A. Luis, “Overall degree of coherence for vectorial electromagnetic fields and the Wigner function,” J. Opt. Soc. Am. A 24, 2070–2074 (2007). [CrossRef]
  28. E. Wolf, “Coherent-mode propagation in spatially band-limited wave fields,” J. Opt. Soc. Am. A 3, 1920–1924 (1986). [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2004).
  30. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1993).
  31. D. A. B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge University, 2008).
  32. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009). [CrossRef]
  33. V. Torres-Company, J. Lancis, and P. Andrés, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011). [CrossRef]
  34. L. Mandel, “Intensity fluctuations of partially polarized light,” Proc. Phys. Soc. London 81, 1104–1114 (1963). [CrossRef]
  35. E. Tervonen, A. T. Friberg, and J. Turunen, “Gaussian Schell-model beams generated with synthetic acousto-optic holograms,” J. Opt. Soc. Am. A 9, 796–803 (1992). [CrossRef]
  36. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, “Spectral coherence properties of temporally modulated stationary light sources,” Opt. Express 11, 1894–1899 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited