OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2482–2501

Laser tomography adaptive optics: a performance study

Eric Tatulli and A. N. Ramaprakash  »View Author Affiliations

JOSA A, Vol. 30, Issue 12, pp. 2482-2501 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical derivation of the on-axis performance of adaptive optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack–Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of adaptive optics correction when using natural, sodium, or Rayleigh laser guide stars. For small diameter class telescopes (5m), we show that a small number of Rayleigh beacons can provide similar performance to that of a single sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction.

© 2013 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 10, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 10, 2013
Published: November 8, 2013

Eric Tatulli and A. N. Ramaprakash, "Laser tomography adaptive optics: a performance study," J. Opt. Soc. Am. A 30, 2482-2501 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Foy and A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, L29–L31 (1985).
  2. R. Q. Fugate, L. M. Wopat, D. L. Fried, G. A. Ameer, S. L. Browne, P. H. Roberts, G. A. Tyler, B. R. Boeke, and R. E. Ruane, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature 353, 144–146 (1991). [CrossRef]
  3. D. L. Fried and J. F. Belsher, “Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for astronomical imaging,” J. Opt. Soc. Am. A 11, 277–287 (1994). [CrossRef]
  4. M. Tallon and R. Foy, “Adaptive telescope with laser probe—isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).
  5. N. Hubin, R. Arsenault, R. Conzelmann, B. Delabre, M. Le Louarn, S. Stroebele, and R. Stuik, “Ground layer adaptive optics,” C.R. Physique 6, 1099–1109 (2005). [CrossRef]
  6. R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, M. P. Jelonek, W. J. Lange, A. C. Slavin, W. J. Wild, D. M. Winker, J. M. Wynia, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. F. Moroney, M. D. Oliker, D. W. Swindle, and R. A. Cleis, “Two generations of laser-guide-star adaptive-optics experiments at the Starfire Optical Range,” J. Opt. Soc. Am. A 11, 310–324 (1994). [CrossRef]
  7. M. Le Louarn, N. Hubin, M. Sarazin, and A. Tokovinin, “New challenges for adaptive optics: extremely large telescopes,” Mon. Not. R. Astron. Soc. 317, 535–544 (2000). [CrossRef]
  8. D. Bonaccini Calia, Y. Feng, W. Hackenberg, R. Holzlöhner, L. Taylor, and S. Lewis, “Laser development for sodium laser guide stars at ESO,” The Messenger 139, 12–19 (2010).
  9. A. Costille, C. Petit, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, and T. Fusco, “Wide field adaptive optics laboratory demonstration with closed-loop tomographic control,” J. Opt. Soc. Am. A 27, 469–483 (2010). [CrossRef]
  10. S. Ströbele, P. La Penna, R. Arsenault, R. D. Conzelmann, B. Delabre, M. Duchateau, R. Dorn, E. Fedrigo, N. Hubin, J. Quentin, P. Jolley, M. Kiekebusch, J. P. Kirchbauer, B. Klein, J. Kolb, H. Kuntschner, M. Le Louarn, J. L. Lizon, P.-Y. Madec, L. Pettazzi, C. Soenke, S. Tordo, J. Vernet, and R. Muradore, “GALACSI system design and analysis,” Proc. SPIE 8447, 844737 (2012). [CrossRef]
  11. R. Conan, F. Bennet, A. H. Bouchez, M. A. van Dam, B. Espeland, W. Gardhouse, C. d’Orgeville, S. Parcell, P. Piatrou, I. Price, F. Rigaut, G. Trancho, and K. Uhlendorf, “The Giant Magellan Telescope laser tomography adaptive optics system,” Proc. SPIE 8447, 84473P (2012). [CrossRef]
  12. T. Fusco, S. Meimon, Y. Clenet, M. Cohen, H. Schnetler, J. Paufique, V. Michau, J.-P. Amans, D. Gratadour, C. Petit, C. Robert, P. Jagourel, E. Gendron, G. Rousset, J.-M. Conan, and N. Hubin, “ATLAS: the E-ELT laser tomographic adaptive optics system,” Proc. SPIE 7736, 77360D (2010). [CrossRef]
  13. P. H. Hu, J. Stone, and T. Stanley, “Application of Zernike polynomials to atmospheric propagation problems,” J. Opt. Soc. Am. A 6, 1595–1608 (1989). [CrossRef]
  14. R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms, Springer Series on Wave Phenomena (Springer, 1994).
  15. R. J. Sasiela and J. D. Shelton, “Mellin transform methods applied to integral evaluation: Taylor series and asymptotic approximations,” J. Math. Phys. 34, 2572–2617 (1993). [CrossRef]
  16. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, 1970).
  17. I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, and D. Zwillinger, Table of Integrals, Series, and Products, 7th ed. (Elsevier Academic, 2007).
  18. G. A. Tyler, “Analysis of propagation through turbulence—evaluation of an integral involving the product of three Bessel functions,” J. Opt. Soc. Am. A 7, 1218–1223 (1990). [CrossRef]
  19. R. Ragazzoni, S. Esposito, and E. Marchetti, “Auxiliary telescopes for the absolute tip-tilt determination of a laser guide star,” Mon. Not. R. Astron. Soc. 276, L76–L78 (1995).
  20. R. Ragazzoni, “Absolute tip-tilt determination with laser beacons,” Astron. Astrophys. 305, L13–L16 (1996).
  21. M. Schöck, R. Foy, M. Tallon, L. Noethe, and J.-P. Pique, “Performance analysis of polychromatic laser guide stars used for wavefront tilt sensing,” Mon. Not. R. Astron. Soc. 337, 910–920 (2002). [CrossRef]
  22. E. Viard, M. Le Louarn, and N. Hubin, “Adaptive optics with four laser guide stars: correction of the cone effect in large telescopes,” Appl. Opt. 41, 11–20 (2002). [CrossRef]
  23. D. Sandler, “Laser beacon adaptive optics systems,” Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge, 1999), p. 331.
  24. H. T. Yura and M. T. Tavis, “Centroid anisoplanatism,” J. Opt. Soc. Am. A 2, 765–773 (1985). [CrossRef]
  25. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  26. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1431 (1965). [CrossRef]
  27. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19, 281–376 (1981). [CrossRef]
  28. A. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers,” Doklady Akademiia Nauk SSSR 30, 301–305 (1941).
  29. V. I. Tatarskii, Wave Propagation in Turbulent Medium (McGraw-Hill, 1961).
  30. J. L. Bufton, “Comparison of vertical profile turbulence structure with stellar observations,” Appl. Opt. 12, 1785–1793 (1973). [CrossRef]
  31. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390–393 (1977). [CrossRef]
  32. G. Rousset, “Wave-front sensors,” Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge, 1999), p. 91.
  33. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771–1776 (1983). [CrossRef]
  34. A. Tokovinin, M. Le Louarn, E. Viard, N. Hubin, and R. Conan, “Optimized modal tomography in adaptive optics,” Astron. Astrophys. 378, 710–721 (2001). [CrossRef]
  35. C. Béchet, M. Le Louarn, R. Clare, M. Tallon, I. Tallon-Bosc, and É. Thiébaut, “Closed-loop ground layer adaptive optics simulations with elongated spots: impact of modeling noise correlations,” in Adaptative Optics for Extremely Large TelescopesY. Clénet, J.-M. Conan, Th. Fusco, and G. Rousset, eds. (EDP Sciences, 2010), p. 03004.
  36. R. Ragazzoni, E. Marchetti, and F. Rigaut, “Modal tomography for adaptive optics,” Astron. Astrophys. 342, L53–L56 (1999).
  37. J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19, 1937–1945 (2002). [CrossRef]
  38. C. E. Campbell, “Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed,” J. Opt. Soc. Am. A 20, 209–217 (2003). [CrossRef]
  39. H. Shu, L. Luo, G. Han, and J.-L. Coatrieux, “General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes,” J. Opt. Soc. Am. A 23, 1960–1966 (2006). [CrossRef]
  40. S. Bará, J. Arines, J. Ares, and P. Prado, “Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils,” J. Opt. Soc. Am. A 23, 2061–2066 (2006). [CrossRef]
  41. L. Lundström and P. Unsbo, “Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils,” J. Opt. Soc. Am. A 24, 569–577 (2007). [CrossRef]
  42. E. Tatulli, “Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures,” J. Opt. Soc. Am. A 30, 726–732 (2013). [CrossRef]
  43. J. P. Véran, “Estimation de la réponse impulsionnelle et restauration d'image en optique adaptative. Application au système d’optique du télescope Canada-France-Hawaii,” Ph.D. thesis (École Nationale Supérieure des Télécommunications, 1997).
  44. T. Fusco, “Optique adaptative et traitement d’images pour l’astronomie: de nouveaux enjeux et de nouvelles solutions,” Ph.D. thesis (Office national d’études et de recherches aérospatiales, 2000).
  45. T. Fusco, J.-M. Conan, V. Michau, L. M. Mugnier, and G. Rousset, “Optimal phase reconstruction in large field of view: application to multiconjugate adaptive optics systems,” Proc. SPIE 4125, 65–76 (2000). [CrossRef]
  46. B. Neichel, T. Fusco, and J.-M. Conan, “Tomographic reconstruction for wide-field adaptive optics systems: Fourier domain analysis and fundamental limitations,” J. Opt. Soc. Am. A 26, 219–235 (2009). [CrossRef]
  47. J.-M. Conan, “'Etude de la correction partielle en optique adaptative,” Ph.D. thesis (Université Paris XI Orsay, 1994).
  48. N. A. Roddier, “Atmospheric wavefront simulation and Zernike polynomials,” Proc. SPIE 1237, 668–679 (1990). [CrossRef]
  49. G. A. Tyler, “Rapid evaluation of d0: the effective diameter of a laser-guide-star adaptive-optics system,” J. Opt. Soc. Am. A 11, 325–338 (1994). [CrossRef]
  50. W. Min and S. Yi, “Turbulence-induced Zernike aberrations of optical wavefronts in partial adaptive compensation,” J. Mod. Opt. 48, 1559–1567 (2001).
  51. R. R. Parenti and R. J. Sasiela, “Laser guide-star systems for astronomical applications,” J. Opt. Soc. Am. A 11, 288–309 (1994). [CrossRef]
  52. V. Kornilov, A. Tokovinin, N. Shatsky, O. Voziakova, S. Potanin, and B. Safonov, “Combined MASS-DIMM instruments for atmospheric turbulence studies,” Mon. Not. R. Astron. Soc. 382, 1268–1278 (2007). [CrossRef]
  53. P. Wizinowich, “Progress in laser guide star adaptive optics and lessons learned,” Proc. SPIE 8447, 84470D (2012). [CrossRef]
  54. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998), p. 448.
  55. D. Bonaccini, W. K. Hackenberg, M. J. Cullum, E. Brunetto, T. Ott, M. Quattri, E. Allaert, M. Dimmler, M. Tarenghi, A. Van Kersteren, C. Di Chirico, B. Buzzoni, P. Gray, R. Tamai, and M. Tapia, “ESO VLT laser guide star facility,” Proc. SPIE 4494, 276–289 (2002). [CrossRef]
  56. M. A. van Dam, A. H. Bouchez, D. Le Mignant, E. M. Johansson, P. L. Wizinowich, R. D. Campbell, J. C. Y. Chin, S. K. Hartman, R. E. Lafon, P. J. Stomski, and D. M. Summers, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: performance characterization,” Publ. Astron. Soc. Pac. 118, 310–318 (2006). [CrossRef]
  57. C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image improvement from a sodium-layer laser guide star adaptive optics system,” Science 277, 1649–1652 (1997). [CrossRef]
  58. G. Molodij, “Wavefront propagation in turbulence: an unified approach to the derivation of angular correlation functions,” J. Opt. Soc. Am. A 28, 1732–1740 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited