OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2502–2509

Linear equations method for modal decomposition using intensity information

Yuanyang Li, Jin Guo, Lisheng Liu, Tingfeng Wang, and Junfeng Shao  »View Author Affiliations

JOSA A, Vol. 30, Issue 12, pp. 2502-2509 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The linear equations method is proposed to calculate the complete modal content of the partially coherent laser beam using only the intensity information. This method could give not only the incoherent expansion coefficients of the modal decomposition but also the cross-correlation expansion coefficients using the intensity profiles in several planes of finite distance along the propagation direction. A simulation is also presented to verify the validity of this theory. In our algorithm, the minimum and maximum mode orders should be known a priori, so we provide an estimation method for the two parameters.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(140.3430) Lasers and laser optics : Laser theory
(140.3460) Lasers and laser optics : Lasers
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: September 5, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: October 18, 2013
Published: November 11, 2013

Yuanyang Li, Jin Guo, Lisheng Liu, Tingfeng Wang, and Junfeng Shao, "Linear equations method for modal decomposition using intensity information," J. Opt. Soc. Am. A 30, 2502-2509 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. E. Wolf and G. S. Agarwal, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541–546 (1984). [CrossRef]
  3. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparre, “Wavefront reconstruction by modal decomposition,” Opt. Express 20, 19714–19725 (2012). [CrossRef]
  4. O. A. Schmidt, C. Schulze, D. Flamm, R. Bruning, T. Kaiser, S. Schroter, and M. Duparre, “Real-time determination of laser beam quality by modal decomposition,” Opt. Express 19, 6741–6748 (2011). [CrossRef]
  5. R. Borghi, G. Piquero, and M. Santarsiero, “Use of biorthogonal functions for the modal decomposition of multimode beams,” Opt. Commun. 194, 235–242 (2001). [CrossRef]
  6. K. M. Du, G. Herziger, P. Loosen, and F. Ruhl, “Computation of the statistical properties of laser light,” Opt. Quantum Electron. 24, S1095–S1108 (1992). [CrossRef]
  7. F. Gori, M. Santarsiero, and G. Guattari, “Coherence and the spatial distribution of intensity,” J. Opt. Soc. Am. A 10, 673–679 (1993). [CrossRef]
  8. D. Dragoman, “Unambiguous coherence retrieval from intensity measurements,” J. Opt. Soc. Am. A 20, 290–295 (2003). [CrossRef]
  9. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite-Gaussian modes,” Appl. Opt. 38, 5272–5281 (1999). [CrossRef]
  10. X. Xue, H. Wei, and A. G. Kirk, “Intensity-based modal decomposition of optical beams in terms of Hermite-Gaussian functions,” J. Opt. Soc. Am. A 17, 1086–1091 (2000). [CrossRef]
  11. H. Laabs, B. Eppich, and H. Weber, “Modal decomposition of partially coherent beams using the ambiguity function,” J. Opt. Soc. Am. A 19, 497–504 (2002). [CrossRef]
  12. R. Borghi, G. Guattari, L. de la Torre, F. Gori, and M. Santarsiero, “Evaluation of the spatial coherence of a light beam through transverse intensity measurements,” J. Opt. Soc. Am. A 20, 1763–1770 (2003). [CrossRef]
  13. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995). [CrossRef]
  14. T. Kaiser, D. Flamm, S. Schroter, and M. Duparr, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17, 9347–9356 (2009). [CrossRef]
  15. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010).
  16. H. Yanai, K. Takeuchi, and Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition (Springer, 2011).
  17. G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicist (Academic, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited