OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2510–2518

Efficient integral equation-based analysis of finite periodic structures in the optical frequency range

Nilufer A. Ozdemir and Christophe Craeye  »View Author Affiliations


JOSA A, Vol. 30, Issue 12, pp. 2510-2518 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002510


View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical response of dense finite arrays of nanoparticles can be efficiently analyzed with the help of macro basis functions obtained by employing the array scanning method. This is demonstrated by analyzing optical collimation in arrays of silver nanorods. The accuracy of the solution obtained with the proposed method has been validated by comparison with solutions obtained employing the Krylov subspace iterative method. The relative error in the electric field distribution on an observation plane above the finite array is of the order of 25dB, while the number of unknowns is reduced by a factor of 32.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: May 28, 2013
Revised Manuscript: September 29, 2013
Manuscript Accepted: October 14, 2013
Published: November 12, 2013

Citation
Nilufer A. Ozdemir and Christophe Craeye, "Efficient integral equation-based analysis of finite periodic structures in the optical frequency range," J. Opt. Soc. Am. A 30, 2510-2518 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-12-2510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997). [CrossRef]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 2005).
  4. J. L. Young and R. O. Nelson, “A summary and systematic analysis of FDTD algorithms for linearly dispersive media,” IEEE Trans. Antennas Propag. 43, 61–77 (2001). [CrossRef]
  5. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  6. E. Moreno, D. E. Erni, C. Hafner, and R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,” J. Opt. Soc. Am. A 19, 101–111 (2002). [CrossRef]
  7. W. H. Yang, G. C. Schatz, and R. P. V. Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 869–875 (1995). [CrossRef]
  8. J. P. Kottman and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000). [CrossRef]
  9. J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000). [CrossRef]
  10. J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). [CrossRef]
  11. W. B. Ewe, H. S. Chou, and E. P. Li, “Volume integral equation analysis of surface plasmon resonance of nanoparticles,” Opt. Express 15, 18200–18208 (2007). [CrossRef]
  12. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009). [CrossRef]
  13. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A 27, 2261–2271 (2010). [CrossRef]
  14. J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010). [CrossRef]
  15. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011). [CrossRef]
  16. M. G. Araújo, J. M. Tabaoda, D. M. Solís, J. Rivero, and F. Obelleiro, “Comparison of surface integral equations for left-handed materials,” Prog. Electromagn. Res. 118, 425–440 (2011). [CrossRef]
  17. M. G. Araújo, J. M. Tabaoda, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012). [CrossRef]
  18. N. A. Ozdemir, C. Simovski, D. Morits, and C. Craeye, “Efficient method of moments analysis of an infinite array of triangular nanoclusters in the optical frequency range,” in International Conference on Electromagnetics in Advanced Applications Digest (IEEE, 2011), pp. 359–362.
  19. J. Poggio and E. K. Miller, “Integral equation solutions of three dimensional scattering problems,” in Computer Techniques for Electromagnetics, R. Mittra, ed. (Pergamon, 1973), pp. 159–264.
  20. Y. Chang and R. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977). [CrossRef]
  21. T. K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977). [CrossRef]
  22. R. F. Harrington, Field Computation by Moment Method (IEEE, 1993).
  23. C. Craeye, X. Radu, A. Schuchinsky, and F. Capolino, “Fundamentals of method of moments for metamaterials,” in Handbook of Metamaterials, F. Capolino, ed. (Taylor & Francis, 2009).
  24. X. Dardenne and C. Craeye, “Method of moments simulation of infinitely periodic structures combining metal with dielectric objects,” IEEE Trans. Antennas Propag. 56, 2372–2380 (2008). [CrossRef]
  25. N. Guérin, C. Craeye, and X. Dardenne, “Accelerated computation of the free space Green’s function gradient of infinite phased arrays of dipoles,” IEEE Trans. Antennas Propag. 57, 3430–3434 (2009). [CrossRef]
  26. K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63, 222–235 (1986). [CrossRef]
  27. N. Engheta, W. D. Murphy, V. Rokhlin, and S. M. Vassiliou, “The Fast Multipole Method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992). [CrossRef]
  28. R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: A pedestrian prescription,” IEEE Trans. Antennas Propag. 35, 7–12 (1993). [CrossRef]
  29. W. C. Chew, J. Jin, E. Michielssen, and J. Song, eds. Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, 2001).
  30. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive integral method for solving large scale electromagnetic scattering and radiation problems,” Radio Sci. 31, 1225–1251 (1996). [CrossRef]
  31. E. Suter and J. R. Mosig, “A sub-domain multilevel approach for the efficient MoM analysis of large planar antennas,” Microw. Opt. Technol. Lett. 26, 270–277 (2000).
  32. J. Yeo, V. Prakash, and R. Mittra, “Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM),” Microw. Opt. Technol. Lett. 39, 456–464 (2003). [CrossRef]
  33. N. Ozdemir, D. Gonzalez-Ovejero, and C. Craeye, “On the relationship between multiple-scattering macro basis functions and Krylov subspace approaches,” IEEE Trans. Antennas Propag. 61, 2088–2098 (2013).
  34. L. Matekovits, V. A. Laza, and G. Vecchi, “Analysis of large complex structures with the synthetic-functions approach,” IEEE Trans. Antennas Propag. 55, 2509–2521 (2007). [CrossRef]
  35. C. Delgado, M. F. Cátedra, and R. Mittra, “Efficient multilevel approach for the generation of characteristic basis functions for large structures,” IEEE Trans. Antennas Propag. 56, 2134–2137 (2008).
  36. N. A. Ozdemir and C. Craeye, “Multiple-scattering-based macro basis functions for the method of moments analysis of 3-D dielectric structures,” in Proceedings of the 26th Annual Review of Progress in Applied Computational Electromagnetics (ACES, 2010), pp. 195–200.
  37. B. A. Munk and G. A. Burrel, “Plane-wave expansion for arrays of arbitrarily oriented piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy-half space,” IEEE Trans. Antennas Propag. 27, 331–343 (1979). [CrossRef]
  38. F. Capolino, D. R. Jackson, D. R. Wilton, and L. B. Felsen, “Comparison of methods for calculating the field excited by a dipole near a 2-D periodic material,” IEEE Trans. Antennas Propag. 55, 1644–1655 (2007). [CrossRef]
  39. C. Craeye and R. Sarkis, “Finite array analysis through combination of macro basis functions and array scanning methods,” ACES J. 23, 256–261 (2008).
  40. N. Ozdemir and C. Craeye, “Efficient analysis of periodic structures involving finite dielectric material based on the array scanning method,” in International Conference on Electromagnetics in Advanced Applications Digest (IEEE, 2009), pp. 938–942.
  41. P. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89, 262109 (2006). [CrossRef]
  42. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267–407 (2005).
  43. S. Kawata, A. Ono, and P. Verma, “Subwavelength color imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008). [CrossRef]
  44. X. Radu, A. Lapeyronnie, and C. Craeye, “Numerical and experimental analysis of a wire medium collimator for MRI,” Electromagnetics 28, 531–543 (2008). [CrossRef]
  45. N. A. Ozdemir, R. M. Mateos, and C. Craeye, “Efficient integral-equation analysis of broadband metamaterials,” in Proceedings of the Fourth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamorphose-VI, 2010), pp. 389–391.
  46. R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE, 2001).
  47. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982). [CrossRef]
  48. A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. 28, 593–603 (1980). [CrossRef]
  49. S. Singh and R. Singh, “On the use of Levins T-transform in accelerating the summation of series representing the free-space periodic Green’s functions,” IEEE Trans. Microw. Theory 41, 884–886 (1993).
  50. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  51. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, 2003).
  52. M. Bebendorf, “Approximation of boundary element matrices,” Numer. Math. 86, 565–589 (2000). [CrossRef]
  53. D. Gonzalez-Ovejero and C. Craeye, “Interpolatory macro basis functions analysis of non-periodic arrays,” IEEE Trans. Antennas Propag. 59, 3117–3122 (2011). [CrossRef]
  54. C. Craeye, T. Gilles, and X. Dardenne, “Efficient full-wave characterization of arrays of antennas embedded in finite dielectric volumes,” Radio Sci. 44, RS1S90 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited