OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2572–2584

Quantitative surface radiance mapping using multiview images of light-emitting turbid media

James A. Guggenheim, Hector R. A. Basevi, Iain B. Styles, Jon Frampton, and Hamid Dehghani  »View Author Affiliations

JOSA A, Vol. 30, Issue 12, pp. 2572-2584 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method is presented for accurately reconstructing a spatially resolved map of diffuse light flux on a surface using images of the surface and a model of the imaging system. This is achieved by applying a model-based reconstruction algorithm with an existing forward model of light propagation through free space that accounts for the effects of perspective, focus, and imaging geometry. It is shown that flux can be mapped reliably and quantitatively accurately with very low error, <3% with modest signal-to-noise ratio. Simulation shows that the method is generalizable to the case in which mirrors are used in the system and therefore multiple views can be combined in reconstruction. Validation experiments show that physical diffuse phantom surface fluxes can also be reconstructed accurately with variability <3% for a range of object positions, variable states of focus, and different orientations. The method provides a new way of making quantitatively accurate noncontact measurements of the amount of light leaving a diffusive medium, such as a small animal containing fluorescent or bioluminescent markers, that is independent of the imaging system configuration and surface position.

© 2013 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.2990) Imaging systems : Image formation theory
(110.7050) Imaging systems : Turbid media
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: July 10, 2013
Revised Manuscript: October 16, 2013
Manuscript Accepted: October 28, 2013
Published: November 20, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

James A. Guggenheim, Hector R. A. Basevi, Iain B. Styles, Jon Frampton, and Hamid Dehghani, "Quantitative surface radiance mapping using multiview images of light-emitting turbid media," J. Opt. Soc. Am. A 30, 2572-2584 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, “Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging,” Neoplasia 2, 491–495 (2000). [CrossRef]
  2. R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 11–18 (2002). [CrossRef]
  3. D. E. Jenkins, Y. Oei, Y. S. Hornig, S.-F. Yu, J. Dusich, T. Purchio, and P. R. Contag, “Bioluminescent imaging (bli) to improve and refine traditional murine models of tumor growth and metastasis,” Clin. Exp. Metastasis 20, 733–744 (2003). [CrossRef]
  4. S. Gross and D. Piwnica-Worms, “Spying on cancer: molecular imaging in vivo with genetically encoded reporters,” Cancer Cell 7, 5–15 (2005).
  5. S. Mandl, C. Schimmelpfennig, M. Edinger, R. S. Negrin, and C. H. Contag, “Understanding immune cell trafficking patterns via in vivo bioluminescence imaging,” J. Cell. Biochem. 87, 239–248 (2002). [CrossRef]
  6. J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, “Bioluminescence imaging of lymphocyte trafficking in vivo,” Exp. Hematol. 29, 1353–1360 (2001). [CrossRef]
  7. X. Wang, M. Rosol, S. Ge, D. Peterson, G. McNamara, H. Pollack, D. B. Kohn, M. D. Nelson, and G. M. Crooks, “Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging,” Blood 102, 3478–3482 (2003). [CrossRef]
  8. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3, 9–23 (2004). [CrossRef]
  9. J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91, 103901 (2003). [CrossRef]
  10. J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Mod. Phys. Lett. B 18, 1403–1431 (2004). [CrossRef]
  11. X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17, 16266–16280 (2009). [CrossRef]
  12. X. Chen, X. Gao, X. Qu, D. Chen, X. Ma, J. Liang, and J. Tian, “Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm,” Appl. Opt. 49, 5654–5664 (2010). [CrossRef]
  13. X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3d reconstruction of light flux distribution on arbitrary surfaces from 2d multi-photographic images,” Opt. Express 18, 19876–19893 (2010). [CrossRef]
  14. X.-L. Chen, H. Zhao, X.-C. Qu, D.-F. Chen, X.-R. Wang, and J.-M. Liang, “All-optical quantitative framework for bioluminescence tomography with non-contact measurement,” Int. J. Autom. Comput. 9, 72–80 (2012). [CrossRef]
  15. X. Chen, J. Liang, X. Qu, Y. Hou, S. Zhu, D. Chen, X. Gao, and J. Tian, “Mapping of bioluminescent images onto ct volume surface for dual-modality blt and ct imaging,” J. X-ray Sci. Technol. 20, 31–44 (2012).
  16. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006). [CrossRef]
  17. A. X. Cong and G. Wang, “Multispectral bioluminescence tomography: methodology and simulation,” Int. J. Biomed. Imag. 2006, 57614 (2006). [CrossRef]
  18. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008). [CrossRef]
  19. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009). [CrossRef]
  20. J. A. Guggenheim, H. R. Basevi, I. B. Styles, J. Frampton, and H. Dehghani, “Multi-view, multi-spectral bioluminescence tomography,” in Biomedical Optics (Optical Society of America, 2012), p. BW4A.7
  21. J. A. Guggenheim, H. Dehghani, H. Basevi, I. B. Styles, and J. Frampton, “Development of a multi-view multi-spectral bioluminescence tomography small animal imaging system,” in European Conferences on Biomedical Optics (International Society for Optics and Photonics, 2011), p. 80881K.
  22. H. R. A. Basevi, J. A. Guggenheim, H. Dehghani, and I. B. Styles, “Simultaneous multiple view high resolution surface geometry acquisition using structured light and mirrors,” Opt. Express 21, 7222–7239 (2013). [CrossRef]
  23. J. Geng, “Structured-light 3d surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011). [CrossRef]
  24. Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations,” in Proceedings of the Seventh IEEE International Conference on Computer Vision (IEEE, 1999), pp. 666–673.
  25. M. Kimura, M. Mochimaru, and T. Kanade, “Projector calibration using arbitrary planes and calibrated camera,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–2.
  26. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421–5441 (2005). [CrossRef]
  27. C. Li, G. S. Mitchell, J. Dutta, S. Ahn, R. M. Leahy, and S. R. Cherry, “A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design,” Opt. Express 17, 7571–7585 (2009). [CrossRef]
  28. I. H. Blifford, “Factors affecting the performance of commercial interference filters,” Appl. Opt. 5, 105–111 (1966). [CrossRef]
  29. X. Chen, X. Gao, X. Qu, D. Chen, B. Ma, L. Wang, K. Peng, J. Liang, and J. Tian, “Qualitative simulation of photon transport in free space based on monte carlo method and its parallel implementation,” Int. J. Biomed. Imag. 2010, 650298 (2010). [CrossRef]
  30. K. E. Luker, L. A. Mihalko, B. T. Schmidt, S. A. Lewin, P. Ray, D. Shcherbo, D. M. Chudakov, and G. D. Luker, “In vivo imaging of ligand receptor binding with Gaussia luciferase complementation,” Nat. Med. 18, 172–177 (2011). [CrossRef]
  31. P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993). [CrossRef]
  32. N. Fortier, G. Demoment, and Y. Goussard, “GCV and ML methods of determining parameters in image restoration by regularization: fast computation in the spatial domain and experimental comparison,” J. Vis. Commun. Image Represent. 4, 157–170 (1993). [CrossRef]
  33. J. Chamorro-Servent, J. Aguirre, J. Ripoll, J. J. Vaquero, and M. Desco, “Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies,” Opt. Express 19, 11490–11506 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited