OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2605–2610

Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns

Yu Takiguchi, Taro Ando, Yoshiyuki Ohtake, Takashi Inoue, and Haruyoshi Toyoda  »View Author Affiliations


JOSA A, Vol. 30, Issue 12, pp. 2605-2610 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002605


View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report direct observation of lateral focal patterns through an acrylic material to investigate the effects of aberrations caused by a planar dielectric interface. Numerical analyses based on vectorial Huygens–Fresnel diffraction theory were also performed to examine the behavior of three-dimensional point spread functions. Experimental and numerical results showed agreement of the behavior of the peak position in the focal patterns with changes in the interface position. Our approach has the potential to predict the effects of aberrations in confocal laser scanning microscopes and super-resolution applications.

© 2013 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(180.1790) Microscopy : Confocal microscopy
(220.1010) Optical design and fabrication : Aberrations (global)
(260.3160) Physical optics : Interference

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 19, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: November 6, 2013
Published: November 25, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Yu Takiguchi, Taro Ando, Yoshiyuki Ohtake, Takashi Inoue, and Haruyoshi Toyoda, "Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns," J. Opt. Soc. Am. A 30, 2605-2610 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-12-2605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997). [CrossRef]
  2. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006). [CrossRef]
  3. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006). [CrossRef]
  4. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013). [CrossRef]
  5. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  6. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993). [CrossRef]
  7. H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994). [CrossRef]
  8. C. J. de Grauw, J. M. Vroom, H. T. M. van der Voort, and H. C. Gerritsen, “Imaging properties in two-photon excitation microscopy and effects of refractive-index mismatch in thick specimens,” Appl. Opt. 38, 5995–6003 (1999). [CrossRef]
  9. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959). [CrossRef]
  10. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959).
  11. A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561–B1565 (1965). [CrossRef]
  12. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  13. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef]
  14. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001). [CrossRef]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  16. T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008). [CrossRef]
  17. Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33, 2326–2328 (2008). [CrossRef]
  18. S. Sato and Y. Kozawa, “Hollow vortex beams,” J. Opt. Soc. Am. A 26, 142–146 (2009). [CrossRef]
  19. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef]
  20. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995). [CrossRef]
  21. P. Török, P. Varga, A. Konkol, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field II,” J. Opt. Soc. Am. A 13, 2232–2238 (1996). [CrossRef]
  22. T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994). [CrossRef]
  23. T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997). [CrossRef]
  24. R. Juškaitis and T. Wilson, “The measurement of the amplitude point spread function of microscope objective lens,” J. Microsc. 189, 8–11 (1998). [CrossRef]
  25. A. S. Marathay and J. F. McCalmont, “Vector diffraction theory for electromagnetic waves,” J. Opt. Soc. Am. A 18, 2585–2593 (2001). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005), Chap. 3.
  27. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17, 14367–14373 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited