OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2618–2626

Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case

Katherine L. Dooley, Lisa Barsotti, Rana X. Adhikari, Matthew Evans, Tobin T. Fricke, Peter Fritschel, Valera Frolov, Keita Kawabe, and Nicolás Smith-Lefebvre  »View Author Affiliations

JOSA A, Vol. 30, Issue 12, pp. 2618-2626 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the angular sensing and control (ASC) of 4 km detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO). Enhanced LIGO, the culmination of the first generation LIGO detectors, operated between 2009 and 2010 with about 40 kW of laser power in the arm cavities. In this regime, radiation-pressure effects are significant and induce instabilities in the angular opto-mechanical transfer functions. Here we present and motivate the ASC design in this extreme case and present the results of its implementation in Enhanced LIGO. Highlights of the ASC performance are successful control of opto-mechanical torsional modes, relative mirror motions of 1×107rad rms, and limited impact on in-band strain sensitivity.

© 2013 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.1270) Other areas of optics : Astronomy and astrophysics
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 19, 2013
Manuscript Accepted: October 8, 2013
Published: November 27, 2013

Katherine L. Dooley, Lisa Barsotti, Rana X. Adhikari, Matthew Evans, Tobin T. Fricke, Peter Fritschel, Valera Frolov, Keita Kawabe, and Nicolás Smith-Lefebvre, "Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case," J. Opt. Soc. Am. A 30, 2618-2626 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” 2013, http://arxiv.org/abs/1305.5188 .
  2. B. P. Abbott, et al. “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys. 72, 076901 (2009). [CrossRef]
  3. R. Adhikari, P. Fritschel, and S. Waldman, “Enhanced LIGO,” (LIGO Laboratory, 2006).
  4. M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007). [CrossRef]
  5. T. Fricke, N. Smith-Lefebvre, R. Abbott, R. Adhikari, K. Dooley, M. Evans, P. Fritschel, V. Frolov, K. Kawabe, J. Kissel, B. Slagmolen, and S. Waldman, “DC readout experiment in Enhanced LIGO,” Class. Quantum Grav. 29, 065005 (2012). [CrossRef]
  6. K. L. Dooley, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012). [CrossRef]
  7. S. Solimeno, F. Barone, C. de Lisio, L. Di Fiore, L. Milano, and G. Russo, “Fabry–Pérot resonators with oscillating mirrors,” Phys. Rev. A 43, 6227–6240 (1991). [CrossRef]
  8. J. A. Sidles and D. Sigg, “Optical torques in suspended Fabry-Perot interferometers,” (LIGO Laboratory, 2003).
  9. J. Sidles and D. Sigg, “Optical torques in suspended Fabry–Perot interferometers,” Phys. Lett. A 354, 167–172 (2006). [CrossRef]
  10. Y. Fan, L. Merrill, C. Zhao, L. Ju, D. Blair, B. Slagmolen, D. Hosken, A. Brooks, P. Veitch, D. Mudge, and J. Munch, “Observation of optical torsional stiffness in a high optical power cavity,” Appl. Phys. Lett. 94, 081105 (2009). [CrossRef]
  11. J. Driggers, “Optomechanical alignment instability in LIGO mode cleaners,” (LIGO Laboratory, 2006).
  12. E. Hirose, K. Kawabe, D. Sigg, R. Adhikari, and P. R. Saulson, “Angular instability due to radiation pressure in the LIGO gravitational-wave detector,” Appl. Opt. 49, 3474–3484 (2010). [CrossRef]
  13. L. Barsotti and M. Evans, “Modeling of alignment sensing and control for Enhanced LIGO,” (LIGO Laboratory, 2009).
  14. P. Fritschel and D. Shoemaker, “Alignment sensing/control design requirements document,” (LIGO Laboratory, 1997).
  15. P. Fritschel, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker, and G. González, “Alignment of an interferometric gravitational wave detector,” Appl. Opt. 37, 6734–6747 (1998). [CrossRef]
  16. D. Z. Anderson, “Alignment of resonant optical cavities,” Appl. Opt. 23, 2944–2949 (1984). [CrossRef]
  17. A. E. Siegman, Lasers, 1st ed. (University Science Books, 1986).
  18. Y. Hefetz, N. Mavalvala, and D. Sigg, “Principles of calculating alignment signals in complex resonant optical interferometers,” J. Opt. Soc. Am. B 14, 1597–1605 (1997). [CrossRef]
  19. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Automatic alignment of optical interferometers,” Appl. Opt. 33, 5041–5049 (1994). [CrossRef]
  20. N. M. Sampas and D. Z. Anderson, “Stabilization of laser beam alignment to an optical resonator by heterodyne detection of off-axis modes,” Appl. Opt. 29, 394–403 (1990). [CrossRef]
  21. Two signals are derived from WFS2.
  22. G. M. Harry, and the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010). [CrossRef]
  23. L. Barsotti, M. Evans, and P. Fritschel, “Alignment sensing and control in advanced LIGO,” Class. Quantum Grav. 27, 084026 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited