OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 160–170

Exploiting spatial sparsity for multiwavelength imaging in optical interferometry

Éric Thiébaut, Ferréol Soulez, and Loïc Denis  »View Author Affiliations


JOSA A, Vol. 30, Issue 2, pp. 160-170 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000160


View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical interferometers provide multiple wavelength measurements. In order to fully exploit the spectral and spatial resolution of these instruments, new algorithms for image reconstruction have to be developed. Early attempts to deal with multichromatic interferometric data have consisted in recovering a gray image of the object or independent monochromatic images in some spectral bandwidths. The main challenge is now to recover the full three-dimensional (spatiospectral) brightness distribution of the astronomical target given all the available data. We describe an approach to implement multiwavelength image reconstruction in the case where the observed scene is a collection of point-like sources. We show the gain in image quality (both spatially and spectrally) achieved by globally taking into account all the data instead of dealing with independent spectral slices. This is achieved thanks to a regularization that favors spatial sparsity and spectral grouping of the sources. Since the objective function is not differentiable, we had to develop a specialized optimization algorithm that also accounts for non-negativity of the brightness distribution.

© 2013 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.3175) Image processing : Interferometric imaging
(100.4145) Image processing : Motion, hyperspectral image processing

ToC Category:
Image Processing

History
Original Manuscript: September 12, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: December 3, 2012
Published: January 8, 2013

Citation
Éric Thiébaut, Ferréol Soulez, and Loïc Denis, "Exploiting spatial sparsity for multiwavelength imaging in optical interferometry," J. Opt. Soc. Am. A 30, 160-170 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-2-160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. É. Thiébaut, “MiRA: an effective imaging algorithm for optical interferometry,” Proc. SPIE 7013, 70131I (2008). [CrossRef]
  2. D. F. Buscher, “Direct maximum-entropy image reconstruction from the bispectrum,” in Proceedings of IAU Symposium 158: Very High Angular Resolution Imaging, J. G. Robertson and W. J. Tango, eds. (University of Sydney, 1994), p. 91–93.
  3. F. Baron and J. S. Young, “Image reconstruction at Cambridge University,” Proc. SPIE 7013, 70133X (2008). [CrossRef]
  4. S. Meimon, L. M. Mugnier, and G. le Besnerais, “Reconstruction method for weak-phase optical interferometry,” Opt. Lett. 30, 1809–1811 (2005). [CrossRef]
  5. K.-H. Hofmann and G. Weigelt, “Iterative image reconstruction from the bispectrum,” Astron. Astrophys. 278, 328–339 (1993).
  6. J.-B. le Bouquin, S. Lacour, S. Renard, E. Thiébaut, and A. Merand, “Pre-maximum spectro-imaging of the Mira star T Lep with AMBER/VLTI,” Astron. Astrophys. 496, L1–L4 (2009). [CrossRef]
  7. F. Soulez, É. Thiébaut, S. Bongard, and R. Bacon, “Restoration of hyperspectral astronomical data from integral field spectrograph,” in Evolution in Remote Sensing (WHISPERS), 2011 3rd Workshop on Hyperspectral Image and Signal Processing (IEEE,2011).
  8. S. Bongard, F. Soulez, É. Thiébaut, and E. Pécontal, “3-D deconvolution of hyper-spectral astronomical data,” Mon. Not. R. Astron. Soc. 418, 258–270 (2011). [CrossRef]
  9. S. Bourguignon, D. Mary, and É. Slezak, “Restoration of astrophysical spectra with sparsity constraints: models and algorithms,” IEEE J. Select. Topics Signal Process. 5, 1002–1013 (2011). [CrossRef]
  10. S. Gillessen, F. Eisenhauer, G. Perrin, W. Brandner, C. Straubmeier, K. Perraut, A. Amorim, M. Schöller, C. Araujo-Hauck, H. Bartko, and , “Gravity: a four-telescope beam combiner instrument for the VLTI,” Proc. SPIE 7734, 77340Y (2010). [CrossRef]
  11. J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. 15, 417–426 (1974).
  12. U. J. Schwarz, “Mathematical-statistical description of the iterative beam removing technique (Method CLEAN),” Astron. Astrophys. 65, 345–356 (1978).
  13. F. Vincent, T. Paumard, G. Perrin, L. Mugnier, F. Eisenhauer, and S. Gillessen, “Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the galactic centre black hole,” Mon. Not. R. Astron. Soc. 412, 2653–2664 (2011). [CrossRef]
  14. D. Donoho, “For most large underdetermined systems of linear equations, the minimal ℓ-1 norm near-solution approximates the sparsest near-solution,” Commun. Pure Appl. Math. 59, 907–934 (2006). [CrossRef]
  15. M. Fornasier and H. Rauhut, “Recovery algorithms for vector valued data with joint sparsity constraints,” SIAM J. Numer. Anal. 46, 577–613 (2008). [CrossRef]
  16. K. A. Marsh and J. M. Richardson, “The objective function implicit in the CLEAN algorithm,” Astron. Astrophys. 182, 174–178 (1987).
  17. É. Thiébaut and F. Soulez, “Multi-wavelength imaging algorithm for optical interferometry,” Proc. SPIE 8445, 84451C (2012). [CrossRef]
  18. É. Thiébaut, “Image reconstruction with optical interferometers,” New Astron. Rev. 53, 312–328 (2009). [CrossRef]
  19. É. Thiébaut and J.-F. Giovannelli, “Image reconstruction in optical interferometry,” IEEE Signal Process. Mag. 27, 97–109 (2010). [CrossRef]
  20. J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51, 560–574 (2003). [CrossRef]
  21. M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” J. R. Stat. Soc. Ser. B 68, 49–67 (2006). [CrossRef]
  22. M. Kowalski, “Sparse regression using mixed norms,” Appl. Comput. Harmon. Anal. 27, 303–324 (2009). [CrossRef]
  23. R. Jenatton, J. Audibert, and F. Bach, “Structured variable selection with sparsity-inducing norms,” J. Mach. Learn. Res. 12, 2777–2824 (2011).
  24. É. Thiébaut and L. Mugnier, “Maximum a posteriori planet detection and characterization with a nulling interferometer,” in Proceedings of IAU Colloquium 200: Direct Imaging of Exoplanets: Science & Techniques, C. Aime and F. Vakili, eds. (Cambridge University, 2006), pp. 547–552.
  25. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer-Verlag, 2006).
  26. É. Thiébaut, “Optimization issues in blind deconvolution algorithms,” Proc. SPIE 4847, 174–183 (2002). [CrossRef]
  27. M. Ireland, J. Monnier, and N. Thureau, “Monte-Carlo imaging for optical interferometry,” Proc. SPIE 6268, 62681T (2008). [CrossRef]
  28. P. L. Combettes and J.-C. Pesquet, Proximal Splitting Methods in Signal Processing (Springer, 2011).
  29. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2010). [CrossRef]
  30. Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imaging Sci. 1, 248–272 (2008). [CrossRef]
  31. W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing,” SIAM J. Imaging Sci. 1, 143–168 (2008). [CrossRef]
  32. M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20, 681–695 (2011). [CrossRef]
  33. M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process. 19, 2345–2356 (2010). [CrossRef]
  34. M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Nat. Bureau Standards 49, 409–436 (1952). [CrossRef]
  35. J. Eckstein and D. Bertsekas, “On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators,” Math. Program. 55, 293–318 (1992). [CrossRef]
  36. M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Select. Topics Signal Process. 1, 586–597 (2007). [CrossRef]
  37. S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Trans. Signal Process. 57, 2479–2493 (2009). [CrossRef]
  38. G. H. Jacoby, D. A. Hunter, and C. A. Christian, “A library of stellar spectra,” Astrophys. J. Suppl. 56, 257–281 (1984). [CrossRef]
  39. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216–231 (2005). [CrossRef]
  40. F. Delplancke, F. Derie, F. Paresce, A. Glindemann, F. Lévy, S. Lévêque, and S. Ménardi, “PRIMA for the VLTI—Science,” Astrophys. Space Sci. 286, 99–104 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited