OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 177–188

Wavefronts, caustics, and ronchigrams of a spherical wave reflected by a spherical mirror

Jorge Castro-Ramos, Magdalena Marciano-Melchor, Mariana Marcelino-Aranda, Edwin Román-Hernández, José Guadalupe Santiago-Santiago, Gilberto Silva-Ortigoza, Ramón Silva-Ortigoza, Román Suárez-Xique, and José Miguel Zárate-Paz  »View Author Affiliations


JOSA A, Vol. 30, Issue 2, pp. 177-188 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000177


View Full Text Article

Enhanced HTML    Acrobat PDF (4054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of the present work is twofold: first we obtain analytical expressions for both the wavefronts and the caustic associated with the light rays reflected by a spherical mirror after being emitted by a point light source located at an arbitrary position in free space, and second, we describe, in detail, the structure of the ronchigrams when the grating or Ronchi ruling is placed at different relative positions to the caustic region and the point light source is located on and off the optical axis. We find that, in general, the caustic has two branches: one is a segment of a line, and the other is a two-dimensional surface. The wavefronts, at the caustic region, have self intersections and singularities. The ronchigrams exhibit closed-loop fringes when the grating is placed at the caustic region.

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(110.4190) Imaging systems : Multiple imaging
(120.5700) Instrumentation, measurement, and metrology : Reflection
(220.4840) Optical design and fabrication : Testing

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 17, 2012
Manuscript Accepted: November 17, 2012
Published: January 10, 2013

Citation
Jorge Castro-Ramos, Magdalena Marciano-Melchor, Mariana Marcelino-Aranda, Edwin Román-Hernández, José Guadalupe Santiago-Santiago, Gilberto Silva-Ortigoza, Ramón Silva-Ortigoza, Román Suárez-Xique, and José Miguel Zárate-Paz, "Wavefronts, caustics, and ronchigrams of a spherical wave reflected by a spherical mirror," J. Opt. Soc. Am. A 30, 177-188 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-2-177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Malacara, A. Cornejo, and M. V. R. K. Murty, “Bibliography of various optical testing methods,” Appl. Opt. 14, 1065–1065 (1975). [CrossRef]
  2. A. Cornejo, H. J. Caulfied, and W. Friday, “Testing of optical surfaces: a bibliography,” Appl. Opt. 20, 4148–4148 (1981). [CrossRef]
  3. V. Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437–451 (1964). [CrossRef]
  4. A. Cornejo-Rodriguez, “Ronchi test,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1978), Chap. 9.
  5. A. A. Sherwood, “Quantitative analysis of the Ronchi test in terms of Ray optics,” J. Br. Astron. Assc. 68, 180–191 (1958).
  6. A. A. Sherwood, “Ronchi test charts for parabolic mirrors,” J. Proc. R. Soc. N. S. W. 93, 19–23 (1959).
  7. D. Malacara and A. Cornejo, “Null Ronchi test for aspherical surfaces,” Appl. Opt. 13, 1778–1780 (1974). [CrossRef]
  8. T. Yatagai, “Fringe scanning Ronchi test for aspherical surfaces,” Appl. Opt. 23, 3676–3679 (1984). [CrossRef]
  9. A. Cordero-Dávila, A. Cornejo-Rodriguez, and O. Cardona-Nuñez, “Null Hartmann and Ronchi–Hartmann tests,” Appl. Opt. 29, 4618–4621 (1990). [CrossRef]
  10. A. Cordero-Dávila, A. Cornejo-Rodriguez, and O. Cardona-Nuñez, “Ronchi and Hartmann tests with the same mathematical theory,” Appl. Opt. 31, 2370–2376 (1992). [CrossRef]
  11. A. Cordero-Dávila, J. Daz-Anzures, and V. Cabrera-Peláez, “Algorithm for the simulation of ronchigrams of arbitrary optical systems and Ronchi grids in generalized coordinates,” Appl. Opt. 41, 3866–3873 (2002). [CrossRef]
  12. E. Román-Hernández and G. Silva-Ortigoza, “Exact computation of image disruption under reflection on a smooth surface and Ronchigrams,” Appl. Opt. 47, 5500–5518 (2008). [CrossRef]
  13. M. V. Berry, “Disruption of images: the caustic-touching theorem,” J. Opt. Soc. Am. A 4, 561–569 (1987). [CrossRef]
  14. E. Román-Hernández, J. G. Santiago-Santiago, G. Silva-Ortigoza, and R. Silva-Ortigoza, “Wavefronts and caustic of a spherical wave reflected by an arbitrary smooth surface,” J. Opt. Soc. Am. A 26, 2295–2305 (2009). [CrossRef]
  15. E. Román-Hernández, J. G. Santiago-Santiago, G. Silva-Ortigoza, R. Silva-Ortigoza, and J. Velázquez-Castro, “Describing the structure of ronchigrams when the grating is placed at the caustic region: the parabolical mirror,” J. Opt. Soc. Am. A 27, 832–845(2010). [CrossRef]
  16. M. Mansuripur, “The Ronchi test,” Opt. Photon. News 8, 42–46 (1997).
  17. D. Malacara, “Geometrical Ronchi test of aspherical mirrors,” Appl. Opt. 4, 1371–1374 (1965). [CrossRef]
  18. V. I. Arnold, Catastrophe Theory (Springer-Verlag, 1986).
  19. V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhauser, 1995).
  20. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1980).
  21. D. L. Shealy and D. G. Burkhard, “Caustic surfaces and irradiance for reflection and refraction from an ellipsoid, elliptic paraboloid, and elliptic cone,” Appl. Opt. 12, 2955–2959 (1973). [CrossRef]
  22. D. G. Burkhard and D. L. Shealy, “Simplified formula for the illuminance in an optical system,” Appl. Opt. 20, 897–909 (1981). [CrossRef]
  23. P. S. Theocaris, “Surface topography by caustics,” Appl. Opt. 15, 1629–1638 (1976). [CrossRef]
  24. P. S. Theocaris, Properties of caustics from conic reflectors. 1: meridional rays,” Appl. Opt. 16, 1705–1716 (1977). [CrossRef]
  25. G. Silva-Ortigoza, J. Castro-Ramos, and A. Cordero-Dávila, “Exact calculation of the circle of least confusion of a rotationally symmetric mirror. II,” Appl. Opt. 40, 1021–1028 (2001). [CrossRef]
  26. G. Silva-Ortigoza, M. Marciano-Melchor, O. Carvente-Muñoz, and Ramón Silva-Ortigoza, “Exact computation of the caustic associated with the evolution of an aberrated wavefront,” J. Opt. A 4, 358–365 (2002). [CrossRef]
  27. J. Castro-Ramos, O. de Ita Prieto, and G. Silva-Ortigoza, “Computation of the disk of least confusion for conic mirrors,” Appl. Opt. 43, 6080–6088 (2004). [CrossRef]
  28. D. L. Shealy and D. G. Burkhard, “Flux density ray propagation in discrete index media expressed in terms of the intrinsic geometry of the reflecting surface,” Opt. Acta 20, 287–301 (1973). [CrossRef]
  29. D. L. Shealy, “Analytical illuminance and caustic surface calculations in geometrical optics,” Appl. Opt. 15, 2588–2596 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited