OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 189–195

Toraldo filters with concentric unequal annuli of fixed phase by evolutionary programming

Nasrin Reza and Lakshminarayan Hazra  »View Author Affiliations

JOSA A, Vol. 30, Issue 2, pp. 189-195 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The resolving power of an optical imaging system is limited by residual aberrations and diffraction effects. The Rayleigh–Abbe diffraction limit of resolution corresponds to radius of the central lobe of the point spread function of an aberration free diffraction limited system. An attempt to circumvent this limitation was proposed by Toraldo di Francia, who showed that suitable pupil plane filtering can overcome this resolution limit, albeit over a restricted field. This paper reports results of our investigations on the use of evolutionary programming to obtain globally or quasi-globally optimum solutions in synthesis of lossless Toraldo filters consisting of concentric unequal area zones of fixed phase.

© 2013 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: November 7, 2012
Manuscript Accepted: December 12, 2012
Published: January 10, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Nasrin Reza and Lakshminarayan Hazra, "Toraldo filters with concentric unequal annuli of fixed phase by evolutionary programming," J. Opt. Soc. Am. A 30, 189-195 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  3. G. Toraldo di Francia, La Diffrazione Delle Luce (Edizioni Scientifiche Einaudi, 1958).
  4. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–438 (1952). [CrossRef]
  5. G. Toraldo di Francia, “Nuovo pupille superresolventi,” Atti Fond. Giorgio Ronchi. 7, 366–372 (1952).
  6. A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 204–206 (1960).
  7. W. Lukosz, “Optical systems with resolving power exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1472 (1966). [CrossRef]
  8. B. R. Frieden, “On arbitrary perfact imaging with a finite aperture,” Opt. Acta 16, 795–807 (1969). [CrossRef]
  9. B. R. Frieden, “Evaluation, design and extrapolation methods for optical signals based on use of the prolate functions,” in Progress in Optics, E. Wolf, ed. (North Holland, 1971), Vol. IX, pp. 311–407.
  10. G. R. Boyer and M. Sechaud, “Superresolution by Taylor filters,” Appl. Opt. 12, 893–894 (1973). [CrossRef]
  11. G. R. Boyer, “Pupil filters for moderate superresolution,” Appl. Opt. 15, 3089–3093 (1976). [CrossRef]
  12. G. R. Boyer, “Realisation d’un filtrage super-resolvant,” Opt. Acta 30, 807–816 (1983). [CrossRef]
  13. R. Boivin and A. Boivin, “Optimized amplitude filtering for superresolution over a restricted field. I. Achievement of maximum central irradiance under an energy constraint,” Opt. Acta 27, 587–610 (1980). [CrossRef]
  14. R. Boivin and A. Boivin, “Optimized amplitude filtering for superresolution over a restricted field. II. Application of the impulse generating filter,” Opt. Acta 27, 1641–1670 (1980). [CrossRef]
  15. R. Boivin and A. Boivin, “Optimized amplitude filtering for superresolution over a restricted field. III. Effects due to variation of the field extent,” Opt. Acta 30, 681–688 (1983). [CrossRef]
  16. I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291 (1982). [CrossRef]
  17. Z. S. Hegedus and V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3, 1892–1896 (1986). [CrossRef]
  18. T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997). [CrossRef]
  19. C. J. R. Sheppard and Z. S. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5, 643–647 (1988). [CrossRef]
  20. M. P. Cagigal, J. E. Oti, V. F. Canals, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004). [CrossRef]
  21. C. J. R. Sheppard, M. D. Sharma, and A. Arbouet, “Axial apodizing filters for confocal imaging,” Optik 111, 347–354 (2000).
  22. M. Yun, L. Liu, J. Sun, and D. Liu, “Three-dimensional superresolution by three-zone complex pupil filters,” J. Opt. Soc. Am. A 22, 272–277 (2005). [CrossRef]
  23. T. R. M. Sales and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227–230 (1998). [CrossRef]
  24. M. Martínez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, “Tailoring the axial shape of the point spread function using the Toraldo concept,” Opt. Express 10, 98–103 (2002). [CrossRef]
  25. H. Luo and C. Zhou, “Comparison of superresolution effects with annular phase and amplitude filters,” Appl. Opt. 43, 6242–6247 (2004). [CrossRef]
  26. X. Liu, L. Liu, D. Liu, and L. Bai, “Design and application of three-zone annular filters,” Optik 117, 453–461 (2006). [CrossRef]
  27. C. J. R. Sheppard, J. Campos, J. C. Escalera, and S. Ledesma, “Two-zone pupil filters,” Opt. Commun. 281, 913–922 (2008). [CrossRef]
  28. C. J. R. Sheppard, J. Campos, J. C. Escalera, and S. Ledesma, “Three-zone pupil filters,” Opt. Commun. 281, 3623–3630 (2008). [CrossRef]
  29. M. Martínez-Corral, P. Andrés, and J. Ojeda-Castaneda, “On-axis diffractional behavior of two dimensional pupils,” Appl. Opt. 33, 2223–2229 (1994). [CrossRef]
  30. M. Martínez-Corral, P. Andrés, J. Ojeda-Castañeda, and G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995). [CrossRef]
  31. S. Ledesma, J. Campos, J. C. Escalera, and M. J. Yzuel, “Simple expressions for performance parameters of complex filters, with applications to super-Gaussian phase filters,” Opt. Lett. 29, 932–934 (2004). [CrossRef]
  32. S. Ledesma, J. C. Escalera, J. Campos, and M. J. Yzuel, “Evolution of the transverse response of an optical system with complex filters,” Opt. Commun. 249, 183–192 (2005). [CrossRef]
  33. T. G. Jabbour, M. Petrovich, and S. M. Kuebler, “Design of axially super resolving phase filters using the method of generalized projection,” Opt. Commun. 281, 2002–2011 (2008). [CrossRef]
  34. L. N. Hazra, “Walsh filters for tailoring of resolution in microscopic imaging,” Micron 38, 129–135 (2007). [CrossRef]
  35. M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2009), Vol. 53, pp. 1–67.
  36. Y. Tan, R. Guo, S. Xiao, G. Chang, and W. Huang, “Design of superresolved phase plates,” J. Laser Micro/Nanoeng. 1, 281–287 (2006). [CrossRef]
  37. L. Liu and G. Wang, “Designing superresolution optical pupil filter with constrained global optimization algorithm,” Optik 119, 481–484 (2008). [CrossRef]
  38. L. N. Hazra and N. Reza, “Optimal design of Toraldo super resolving filters,” Proc. SPIE 7787, 77870D (2010). [CrossRef]
  39. L. N. Hazra and N. Reza, “Superresolution by pupil plane phase filtering,” Pramana 75, 855–867 (2010). [CrossRef]
  40. I. Rechenberg, Evolutionsstrategie: Optimeirung Technischer System nach Prinzipien der Biologischen Evolution (Frommen–Holzboog Verlag, 1943).
  41. D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  42. S. Banerjee and L. N. Hazra, “Structural design of broken contact doublets with prespecified aberration targets using genetic algorithm,” J. Mod. Opt. 49, 1111–1123 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited