OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 252–258

Patterned cholesteric liquid crystal polymer film

Wei-Liang Hsu, Ji Ma, Graham Myhre, Kaushik Balakrishnan, and Stanley Pau  »View Author Affiliations

JOSA A, Vol. 30, Issue 2, pp. 252-258 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Herein, the ability to create arbitrarily patterned circular polarized optical devices is demonstrated by using cholesteric liquid crystal polymer. Photoalignment with polarized ultraviolet light is utilized to create aligned cholesteric liquid crystal films. Two different methods, thermal annealing and solvent rinse, are utilized for patterning cholesteric liquid crystal films over large areas. The patterned cholesteric liquid crystal films are measured using a Mueller matrix imaging polarimeter, and the polarization properties, including depolarization index, circular diattenuation (CD), and circular retardance are derived. Patterned nonlinearly polarized optical devices can be fabricated with feature sizes as small as 20 μm with a CD of 0.812±0.015. Circular polarizing filters based on polymer cholesteric liquid crystal films have applications in three-dimensional displays, medical imaging, polarimetry, and interferometry.

© 2013 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(260.5430) Physical optics : Polarization
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:

Original Manuscript: October 17, 2012
Revised Manuscript: January 7, 2013
Manuscript Accepted: January 8, 2013
Published: January 31, 2013

Wei-Liang Hsu, Ji Ma, Graham Myhre, Kaushik Balakrishnan, and Stanley Pau, "Patterned cholesteric liquid crystal polymer film," J. Opt. Soc. Am. A 30, 252-258 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. T. Lee, H. Y. Lin, and C. H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18, 27079–27094 (2010). [CrossRef]
  2. K. Twietmeyer, R. Chipman, A. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16, 21339–21354 (2008). [CrossRef]
  3. G. Nordin, J. Meier, P. Deguzman, and M. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999). [CrossRef]
  4. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005). [CrossRef]
  5. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007). [CrossRef]
  6. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010). [CrossRef]
  7. N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005). [CrossRef]
  8. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002). [CrossRef]
  9. Y. L. Zhou and D. J. Klotzkin, “Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 μm,” Appl. Opt. 47, 3555–3560 (2008). [CrossRef]
  10. K. Bachman, J. Peltzer, P. Flammer, T. Furtak, R. Collins, and R. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20, 1308–1319 (2012). [CrossRef]
  11. J. Peltzer, P. Flammer, T. Furtak, R. Collins, and R. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express 19, 18072–18079 (2011). [CrossRef]
  12. V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011). [CrossRef]
  13. R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18, 25815–25824 (2010). [CrossRef]
  14. L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999). [CrossRef]
  15. G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010). [CrossRef]
  16. R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008). [CrossRef]
  17. A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996). [CrossRef]
  18. I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003). [CrossRef]
  19. B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000). [CrossRef]
  20. J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003). [CrossRef]
  21. O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006). [CrossRef]
  22. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992). [CrossRef]
  23. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).
  24. G. Myhre and S. Pau, “Imaging capability of patterned liquid crystals,” Appl. Opt. 48, 6152–6158 (2009). [CrossRef]
  25. G. Myhre, A. Sayyad, and S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18, 27777–27786 (2010). [CrossRef]
  26. J. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995). [CrossRef]
  27. R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 1995).
  28. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).
  29. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).
  30. J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011). [CrossRef]
  31. S. Y. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  32. G. Q. Zhang, X. S. Zhou, and Y. Huang, “Influence of polymerization on the cholesteric structure in ethyl-cyanoethyl cellulose/acrylic acid solutions,” Polymer 44, 2137–2141(2003). [CrossRef]
  33. S. Chandrasekhar and J. Shashidhara Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971). [CrossRef]
  34. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).
  35. B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited