OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 448–454

Vector Monte Carlo simulations on atmospheric scattering of polarization qubits

Ming Li, Pengfei Lu, Zhongyuan Yu, Lei Yan, Zhihui Chen, Chuanghua Yang, and Xiao Luo  »View Author Affiliations

JOSA A, Vol. 30, Issue 3, pp. 448-454 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

© 2013 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(290.1310) Scattering : Atmospheric scattering
(060.2605) Fiber optics and optical communications : Free-space optical communication
(060.5565) Fiber optics and optical communications : Quantum communications

Original Manuscript: January 3, 2013
Revised Manuscript: January 28, 2013
Manuscript Accepted: January 29, 2013
Published: February 19, 2013

Ming Li, Pengfei Lu, Zhongyuan Yu, Lei Yan, Zhihui Chen, Chuanghua Yang, and Xiao Luo, "Vector Monte Carlo simulations on atmospheric scattering of polarization qubits," J. Opt. Soc. Am. A 30, 448-454 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Jacobs and J. D. Franson, “Quantum cryptography in free space,” Opt. Lett. 21, 1854–1856 (1996). [CrossRef]
  2. J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012). [CrossRef]
  3. X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012). [CrossRef]
  4. A. Sehat, J. Soderholm, G. Bjork, P. Espinoza, A. B. Klimov, and L. L. Sanchez-Soto, “Quantum polarization properties of two-mode energy eigenstates,” Phys. Rev. A 71, 033818 (2005). [CrossRef]
  5. D. H. Höhn, “Depolarization of a laser beam at 6328 Å due to atmospheric transmission,” Appl. Opt. 8, 367–369 (1969). [CrossRef]
  6. J. N. Brddford and J. W. Tucker, “A sensitive system for measuring atmospheric depolarization of light,” Appl. Opt. 8, 645–647 (1969). [CrossRef]
  7. M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, Y. Koyama, and H. Kunimori, “Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space,” Opt. Express 17, 22333–22340(2009). [CrossRef]
  8. T. Aruga and T. Igarashi, “Narrow beam light transfer in small particles: image blurring and depolarization,” Appl. Opt. 20, 2698–2705 (1981). [CrossRef]
  9. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, 1978).
  10. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  11. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef]
  12. B. D. Cameron, M. J. Rakovic, M. Mehrübeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998). [CrossRef]
  13. M. J. Rakovi, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999). [CrossRef]
  14. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000). [CrossRef]
  15. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef]
  16. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530–6539 (2004). [CrossRef]
  17. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405(2005). [CrossRef]
  18. I. Meglinski, M. Kirillin, V. Kuzmin, and R. Myllylä, “Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method,” Opt. Lett. 33, 1581–1583 (2008). [CrossRef]
  19. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Express 18, 21714–21724 (2010). [CrossRef]
  20. H. Yin, H. Jia, H. Zhang, X. Wang, S. Chang, and J. Yang, “Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation,” J. Opt. Soc. Am. A 28, 2082–2085(2011). [CrossRef]
  21. I. T. Lima, A. Kalra, H. E. Hernández-Figueroa, and S. S. Sherif, “Fast calculation of multipath diffusive reflectance in optical coherence tomography,” Biomed. Opt. Express 3, 692–700 (2012). [CrossRef]
  22. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005). [CrossRef]
  23. A. Hielscher, A. Eick, J. Mourant, D. Shen, J. Freyer, and I. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited