OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 489–500

Angular spectrum and localized model of Davis-type beam

James A. Lock  »View Author Affiliations


JOSA A, Vol. 30, Issue 3, pp. 489-500 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000489


View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The angular spectrum of the Davis fifth-order linearly polarized, dual, and symmetrized fields of a focused Gaussian laser beam is obtained. Since the original Davis fields are not an exact solution of the vector wave equation and Maxwell’s equations, a beam remodeling procedure within the angular spectrum is described that produces an exact solution. The spherical multipole beam shape coefficients of the remodeled beam are then obtained, and it is shown that in the weak focusing limit they simplify to the localized model Gaussian beam shape coefficients for both on-axis and off-axis beams. The angular spectrum method is then applied to a transversely confined electromagnetic beam with arbitrary profile in the focal plane, and to a general zero-order Bessel beam.

© 2013 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(140.3295) Lasers and laser optics : Laser beam characterization
(290.5825) Scattering : Scattering theory

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 10, 2012
Manuscript Accepted: January 8, 2013
Published: February 22, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
James A. Lock, "Angular spectrum and localized model of Davis-type beam," J. Opt. Soc. Am. A 30, 489-500 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-3-489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gouesbet and G. Gréhan, “General Lorenz–Mie theory in the strict sense, and other GLMTs,” in Generalized Lorenz–Mie Theory (Springer, 2011), pp. 37–88.
  2. H. C. van de Hulst, “Mie’s formal solution,” in Light Scattering by Small Particles (Dover, 1981), pp. 119–126.
  3. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
  4. J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef]
  5. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  6. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  7. G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrarily shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]
  8. P. C. Clemmow, “Plane wave representation,” in The Plane Wave Spectrum Representation of Electromagnetic Fields(Pergamon, 1966), pp. 11–38.
  9. J. W. Goodman, “The angular spectrum of plane waves,” in Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 48–51.
  10. W. H. Carter, “Bandlimited angular spectrum approximation to a scalar dipole field,” Opt. Commun. 2, 142–148 (1970). [CrossRef]
  11. W. H. Carter, “Electromagnetic field of a Gaussian beam with an elliptical cross section,” J. Opt. Soc. Am. 62, 1195–1201(1972). [CrossRef]
  12. A. Dociu and T. Wriedt, “Plane wave spectrum of electromagnetic beams,” Opt. Commun. 136, 114–124 (1997). [CrossRef]
  13. A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006). [CrossRef]
  14. S. Colak, C. Yeh, and L. W. Casperson, “Scattering of focused beams by tenuous particles,” Appl. Opt. 18, 294–302 (1979). [CrossRef]
  15. C. Yeh, S. Colak, and P. W. Barber, “Scattering by sharply focused beams by arbitrarily shaped dielectric particles: an exact solution,” Appl. Opt. 21, 4426–4433 (1982). [CrossRef]
  16. E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993). [CrossRef]
  17. W. L. Moreira, A. A. R. Neves, M. K. Garbos, T. G. Euser, P. S. J. Russell, and C. L. Cesar, “Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions,” Phys. OptarXiv:1003.2392v3.
  18. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
  19. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  20. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  21. L. W. Casperson and C. Yeh, “Rayleigh–Debye scattering with focused laser beams,” Appl. Opt. 17, 1637–1643 (1978). [CrossRef]
  22. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  23. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  24. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  25. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz–Mie theory. 1. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544 (2004). [CrossRef]
  26. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  27. J. A. Lock, “Beam shape coefficients of the most general focused Gaussian laser beam for light scattering applications,” J. Quant. Spectrosc. Radiat. Transfer (2013), to be published. [CrossRef]
  28. M. E. Rose, “Dual fields,” in Multipole Fields (Wiley, 1955), p. 9.
  29. S. A. Schaub, J. P. Barton, and D. R. Alexander, “Simplified scattering coefficient expressions for a spherical particle located on the propagation axis of a fifth-order Gaussian beam,” Appl. Phys. Lett. 55, 2709–2711 (1989). [CrossRef]
  30. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002). [CrossRef]
  31. G. Goertzel, “Angular correlation of gamma-rays,” Phys. Rev. 70, 897–909 (1946). [CrossRef]
  32. M. E. Rose, “Formulation of the problem,” in Multipole Fields (Wiley, 1955), p. 73.
  33. J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres. Part 1-multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–390 (1971). [CrossRef]
  34. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
  35. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994). [CrossRef]
  36. J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010). [CrossRef]
  37. G. Arfken, “Bessel functions of the first kind, Jν(x),” in Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 587, Eq. (11.1.16b).
  38. J. A. Lock, “Partial-wave expansions of angular spectra of plane waves,” J. Opt. Soc. Am. A 23, 2803–2809 (2006). [CrossRef]
  39. I. S. Gradshteyn and I. M. Ryzhik, “Combinations of Bessel functions, exponentials, and powers,” in Table of Integrals, Series, and Products (Academic, 1965), p. 718, Eq. (6.633.2).
  40. G. Arfken, “Orthoginality,” in Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 594, Eq. (11.59).
  41. G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial-wave representations of laser beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef]
  42. H. C. van de Hulst, “The localization principle,” in Light Scattering by Small Particles (Dover, 1981), pp. 208–209.
  43. A. Doicu and T. Wreidt, “Computation of the beam shape coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997). [CrossRef]
  44. H. Zhang and Y. Han, “Addition theorem for the vector spherical wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008). [CrossRef]
  45. L. Boyde, K. J. Chalut, and J. Guck, “Exact analytical expansion of an off-axis Gaussian laser beam using the translation theorems for the vector spherical harmonics,” Appl. Opt. 50, 1023–1033 (2011). [CrossRef]
  46. B. Stout, B. Rolly, M. Fall, J. Hazart, and N. Bonod, “Laser-particle interactions in shaped beams: beam power normalization,” J. Quant. Spectrosc. Radiat. Transfer (2013), to be published. [CrossRef]
  47. S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991). [CrossRef]
  48. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8, 1–23 (2006). [CrossRef]
  49. J. M. Taylor and G. D. Love, “Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations,” J. Opt. Soc. Am. A 26, 278–282 (2009). [CrossRef]
  50. J. Chen, J. Ng, P. Wang, and Z. Lin, “Analytical partial wave expansion of vector Bessel beam and its application to optical binding,” Opt. Lett. 35, 1674–1676 (2010). [CrossRef]
  51. L. A. Ambrosio and H. E. Hernández-Figueroa, “Integral localized approximation description of ordinary Bessel beams and applications to optical trapping forces,” Biomed. Opt. Express 2, 1893–1906 (2011). [CrossRef]
  52. G. Gouesbet and J. A. Lock, “List of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus [Invited],” Appl. Opt.52, 897–916(2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited