OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 671–676

Design of a shape-optimized metallic nanoheater

Arnab Dewanjee, Daniel F. V. James, and Mohammad Mojahedi  »View Author Affiliations

JOSA A, Vol. 30, Issue 4, pp. 671-676 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a structural optimization method for metal nanostructures based on the shape dependency of their electromagnetic (EM) heat dissipation and thermodynamic transfer to the surroundings. We have used a parallel genetic algorithm in conjunction with a coupled EM (finite-difference time-domain) and thermodynamic modeling of the metallic nanostructures for the optimization. The optimized nanostructure demonstrates significant improvement in EM heating in the spectral window of optimization as well as expedited cooling properties. The symmetry of the structures, which is inherent in the design procedure, makes them independent of the polarization at normal incidence and insensitive to the incident direction while incidence is inclined at an angle.

© 2013 Optical Society of America

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.3910) Physical optics : Metal optics
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Physical Optics

Original Manuscript: January 14, 2013
Manuscript Accepted: February 7, 2013
Published: March 21, 2013

Arnab Dewanjee, Daniel F. V. James, and Mohammad Mojahedi, "Design of a shape-optimized metallic nanoheater," J. Opt. Soc. Am. A 30, 671-676 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  2. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
  3. M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994). [CrossRef]
  4. V. G. Farafonov, N. V. Voshchinnikov, and V. V. Somsikov, “Light scattering by a core-mantle spheroidal particle,” Appl. Opt. 35, 5412–5426 (1996). [CrossRef]
  5. Y. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003). [CrossRef]
  6. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. 80, 1826–1828 (2002).
  7. T. Klar, M. Perner, S. Grosse, G. von Plessen, E. Spirkl, and J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998). [CrossRef]
  8. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001). [CrossRef]
  9. K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003). [CrossRef]
  10. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics of extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef]
  11. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9, 1139–1146 (2009). [CrossRef]
  12. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005). [CrossRef]
  13. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells for clinical therapeutic applications,” J. Phys. Chem. 113, 12090–12095 (2009). [CrossRef]
  14. R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res. 44, 936–946 (2011). [CrossRef]
  15. Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithm (Wiley, 1999).
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  17. S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics 16, 399–415 (1996). [CrossRef]
  18. H. D. Baehr and K. Stephan, Heat and Mass Transfer2nd ed. (Springer, 2006).
  19. C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. Van Zon, “SciNet: lessons learned from building a power-efficient top-20 system and data centre,” J. Phys. Conf. Ser. 256, 012026(2010). [CrossRef]
  20. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6, 2592–2597 (2006). [CrossRef]
  21. J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Lett. 9, 4417–4423 (2009). [CrossRef]
  22. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited