OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 682–690

Phase-space window and degrees of freedom of optical systems with multiple apertures

Haldun M. Ozaktas and Figen S. Oktem  »View Author Affiliations


JOSA A, Vol. 30, Issue 4, pp. 682-690 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000682


View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show how to explicitly determine the space-frequency window (phase-space window) for optical systems consisting of an arbitrary sequence of lenses and apertures separated by arbitrary lengths of free space. If the space-frequency support of a signal lies completely within this window, the signal passes without information loss. When it does not, the parts that lie within the window pass and the parts that lie outside of the window are blocked, a result that is valid to a good degree of approximation for many systems of practical interest. Also, the maximum number of degrees of freedom that can pass through the system is given by the area of its space-frequency window. These intuitive results provide insight and guidance into the behavior and design of systems involving multiple apertures and can help minimize information loss.

© 2013 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.2590) Fourier optics and signal processing : ABCD transforms
(080.2730) Geometric optics : Matrix methods in paraxial optics
(110.1220) Imaging systems : Apertures
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms
(050.5082) Diffraction and gratings : Phase space in wave options

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: October 26, 2012
Revised Manuscript: February 21, 2013
Manuscript Accepted: February 22, 2013
Published: March 21, 2013

Citation
Haldun M. Ozaktas and Figen S. Oktem, "Phase-space window and degrees of freedom of optical systems with multiple apertures," J. Opt. Soc. Am. A 30, 682-690 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-4-682


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).
  2. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996). [CrossRef]
  3. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–499 (1955). [CrossRef]
  4. D. Gabor, “Light and information,” in Progress In Optics, E. Wolf, ed. (Elsevier, 1961), Vol. I, Chap. 4, pp. 109–153.
  5. A. W. Lohmann, “The space-bandwidth product, applied to spatial filtering and holography,” Research paper RJ-438 (IBM San Jose Research Laboratory, 1967).
  6. G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–803 (1969). [CrossRef]
  7. F. Gori and G. Guattari, “Effects of coherence on the degrees of freedom of an image,” J. Opt. Soc. Am. 61, 36–39 (1971). [CrossRef]
  8. F. Gori and G. Guattari, “Shannon number and degrees of freedom of an image,” Opt. Commun. 7, 163–165 (1973). [CrossRef]
  9. F. Gori and G. Guattari, “Degrees of freedom of images from point-like-element pupils,” J. Opt. Soc. Am. 64, 453–458 (1974). [CrossRef]
  10. F. Gori, S. Paolucci, and L. Ronchi, “Degrees of freedom of an optical image in coherent illumination, in the presence of aberrations,” J. Opt. Soc. Am. 65, 495–501 (1975). [CrossRef]
  11. L. Ronchi and F. Gori, “Degrees of freedom for spherical scatterers,” Opt. Lett. 6, 478–480 (1981). [CrossRef]
  12. A. Starikov, “Effective number of degrees of freedom of partially coherent sources,” J. Opt. Soc. Am. 72, 1538–1544 (1982). [CrossRef]
  13. G. Newsam and R. Barakat, “Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics,” J. Opt. Soc. Am. A 2, 2040–2045 (1985). [CrossRef]
  14. A. W. Lohmann, Optical Information Processing, Lecture notes (Optik+Info, 1986).
  15. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000). [CrossRef]
  16. A. Stern, and B. Javidi, “Shannon number and information capacity of three-dimensional integral imaging,” J. Opt. Soc. Am. A 21, 1602–1612 (2004). [CrossRef]
  17. R. Solimene, and R. Pierri, “Number of degrees of freedom of the radiated field over multiple bounded domains,” Opt. Lett. 32, 3113–3115 (2007). [CrossRef]
  18. F. S. Oktem, and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett 16, 727–730 (2009). [CrossRef]
  19. F. S. Oktem, and H. M. Ozaktas, “Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product,” J. Opt. Soc. Am. A 27, 1885–1895 (2010). [CrossRef]
  20. F. S. Oktem, “Signal representation and recovery under partial information, redundancy, and generalized finite extent constraints,” Master’s thesis (Bilkent University, 2009).
  21. D. Mendlovic, and A. Lohmann, “Space-bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997). [CrossRef]
  22. Z. Zalevsky, D. Mendlovic, and A. Lohmann, “Understanding superresolution in wigner space,” J. Opt. Soc. Am. A 17, 2422–2430 (2000). [CrossRef]
  23. P. Catrysse, and B. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002). [CrossRef]
  24. M. J. Bastiaans, and T. Alieva, “Classification of lossless first-order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053–1062 (2007). [CrossRef]
  25. T. Alieva and M. J. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007). [CrossRef]
  26. A. Stern, “Uncertainty principles in linear canonical transform domains and some of their implications in optics,” J. Opt. Soc. Am. A 25, 647–652 (2008). [CrossRef]
  27. B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun. 135, 32–36 (1997). [CrossRef]
  28. J. Rodrigo, T. Alieva, and M. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007). [CrossRef]
  29. J. J. Healy, and J. T. Sheridan, “Cases where the linear canonical transform of a signal has compact support or is band-limited,” Opt. Lett. 33, 228–230 (2008). [CrossRef]
  30. H. M. Ozaktas, M. A. Kutay, and C. Candan, “Fractional Fourier transform,” in Transforms and Applications Handbook, A. D. Poularikas, ed. (CRC, 2010), pp. 14-1–14-28.
  31. K. B. Wolf, “Construction and properties of canonical transforms,” in Integral Transforms in Science and Engineering (Plenum, 1979), Chap. 9.
  32. H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006). [CrossRef]
  33. A. Koc, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008). [CrossRef]
  34. T. Alieva and M. J. Bastiaans, “Alternative representation of the linear canonical integral transform,” Opt. Lett. 30, 3302–3304 (2005). [CrossRef]
  35. M. J. Bastiaans and T. Alieva, “Synthesis of an arbitrary ABCD system with fixed lens positions,” Opt. Lett. 31, 2414–2416 (2006). [CrossRef]
  36. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23, 2494–2500 (2006). [CrossRef]
  37. H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997). [CrossRef]
  38. H. Ozaktas, S. Ark, and T. Coşkun, “Fundamental structure of fresnel diffraction: natural sampling grid and the fractional Fourier transform,” Opt. Lett. 36, 2524–2526 (2011). [CrossRef]
  39. H. Ozaktas, S. Ark, and T. Coşkun, “Fundamental structure of Fresnel diffraction: longitudinal uniformity with respect to fractional Fourier order,” Opt. Lett. 37, 103–105 (2012). [CrossRef]
  40. L. Cohen, Integral Time-Frequency Analysis (Prentice-Hall, 1995).
  41. M. J. Bastiaans, “Applications of the Wigner distribution function in optics,” in The Wigner Distribution: Theory and Applications in Signal Processing, W. Meckenbrauker, ed. (Elsevier, 1997), pp. 375–426.
  42. G. Forbes, V. Manko, H. Ozaktas, R. Simon, and K. Wolf, “Wigner distributions and phase space in optics,” J. Opt. Soc. Am. A 17, 2274 (2000). [CrossRef]
  43. J. Maycock, C. McElhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms,” Appl. Opt. 45, 2975–2985 (2006). [CrossRef]
  44. H. M. Ozaktas and O. Aytur, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995). [CrossRef]
  45. L. Cohen, “Time-frequency distributions—a review,” Proc. IEEE 77, 941–981 (1989). [CrossRef]
  46. H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  47. D. Mendlovic, A. Lohmann, and Z. Zalevsky, “Space-bandwidth product adaptation and its application to superresolution: examples,” J. Opt. Soc. Am. A 14, 563–567 (1997). [CrossRef]
  48. K. Wolf, D. Mendlovic, and Z. Zalevsky, “Generalized Wigner function for the analysis of superresolution systems,” Appl. Opt. 37, 4374–4379 (1998). [CrossRef]
  49. Z. Zalevsky, N. Shamir, and D. Mendlovic, “Geometrical superresolution in infrared sensor: experimental verification,” Opt. Eng. 43, 1401–1406 (2004). [CrossRef]
  50. Z. Zalevsky, V. Mico, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009). [CrossRef]
  51. J. Lindberg, “Mathematical concepts of optical superresolution,” J. Opt. 14, 083001 (2012). [CrossRef]
  52. L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Express 13, 2444–2452 (2005). [CrossRef]
  53. M. Testorf and A. Lohmann, “Holography in phase space,” Appl. Opt. 47, A70–A77 (2008). [CrossRef]
  54. U. Gopinathan, G. Pedrini, B. Javidi, and W. Osten, “Lensless 3D digital holographic microscopic imaging at vacuum UV wavelength,” J. Disp. Technol. 6, 479–483 (2010). [CrossRef]
  55. D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011). [CrossRef]
  56. B. H. Walker, Optical Design for Visual Systems (SPIE, 2000).
  57. B. Hennelly and J. Sheridan, “Optical encryption and the space bandwidth product,” Opt. Commun. 247, 291–305 (2005). [CrossRef]
  58. J. Healy and J. Sheridan, “Bandwidth, compact support, apertures and the linear canonical transform in ABCD systems,” Proc. SPIE 6994, 69940W (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited